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In this paper it will be investigated that whether it is possible to find some regions in
which earthquakes occur as well-behaved random processes (instead of chaotic
processes). If so, it will be possible to use analysis methods of random processes in
earthquake forecasting. There are two main approaches for earthquake prediction;
first, precursory methods based on relationship between abnormal behavior of
some geophysical quantity (such as gravitational field, crust conductivity,…) and
earthquake occurrence. Second, forecasting methods based on the statistical analy-
sis of earthquakes themselves, which is dealt with in this paper. Each probability
distribution function (pdf) in statistics has its own coefficient of variations (CV)
which due to it we can have a sense of dispersion and variance level of quantity
which obeys that specific pdf and also its future variances. In the case of earthquake
occurrence also it is possible to calculate the CV of inter-occurrence times of
sequential earthquakes in a specified region and specified time interval, in order to
find appropriate subregions in which random processes analysis tools can be used
for forecasting future seismic behaviors. Here this idea has been applied to Iran.
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1. Introduction

Coefficient of variations (CV) is one of the
useful quantities in descriptive statistics which is
defined as division of standard deviation σ  by the
mean µ  of some statistical data [1-2]:

µ
σ=vC                                                            (1)

The CV could be interpreted as a normalized
measure of dispersion. It is used to calculate the
intensity level of variations and dispersion of data
sets. It works better than ordinary standard deviation
because it is divided by the mean. For example, the
standard deviation of the two numbers 0 and 1 is
equal to 0.5 and it exactly satisfies for the two
numbers 1000000 and 1000001. It should be noted
that the variation of some quantity from zero to one
is extremely different to variation from 1000000 to
1000001; because in the first case the quantity is

multiplied by infinity and in the second by 1.000001,
therefore the dispersion and variance in this case
is extremely less and the data are more ordered.
This fact will be more illustrated when the CV is
calculated instead of the standard deviation; the CV
of 0 and 1 is equal to 1 and the CV of 1000000 and
1000001 is equal to 0.0000005 which shows that the
variation is much less in the second case.

The CV is a tool for measuring the variation rate
of statistical quantities. For example in financial
fields, the reliability theory states that investment
on stocks or goods which have a high CV on their
daily prices is risky. In probability theory, statistical
distributions are classified in two classes, dependent
on their CV amount: low-variance and high-variance.
For exponential distribution, which is often used to
model the time between independent events that
happen at an average rate 1−λ  and have relation in
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the form of x e λ−λ  as shown in Figure (1), the
standard deviation is equal to its mean, therefore
its CV is equal to one. Distributions with CV less
than one (such as an Erlang distribution) are consid-
ered as low-variance, while those with CV greater
than one (such as hyper-exponential and power-law
distributions) are considered as high-variance.

The restriction in usage of CV is whenever the
mean is equal to zero. Now consider the 20 numbers
below; every k numbers )202( ≤≤ k  from the left
hand have the CV equal to one:
0, 1, 3.8, 7.5, 15.8, 25.8, 39, 55, 75, 97, 124, 155, 190,
228, 271, 319, 370, 427, 489, 555

It can be assumed that these numbers are the
time distances between sequential earthquakes in
some regions in units such as day. The purpose of
representing these numbers is to give the reader an
intuition about coefficient of variations (CV) equal
to one.

In continuation, we would like to study the
sequences of random events occurring in time.
Suppose starting from a time point ,00 =t  we begin
to count the number of events. Then for each time
value t, the number of events N(t) that have occurred
in time interval [0, t] are obtained. For example
N(t) is the number of earthquakes occurred in time
interval [0, t], or the number of accidents in a
particular crossroad and so on.

Clearly N(t) is a discrete random variable with
possible values from {0, 1, 2,...}. To study the distri-
bution of N(t) the following assumptions are made:
1. All ,0≥n  and for any two equal time intervals

∆ t1 and ∆ t2 the probability of n events in ∆ t1 is
equal to probability of n events in ∆ t2.

2. For all ,0≥n  and for any interval (t, t + s), the
probability of n events in (t, t + s) is independent
of how many events have occurred earlier or how
they have occurred. More formally, let 0 ≤  t1 < t2
< t3 < ... < tk be the given times and Ai,1≤ i≤ k-1
be the event that ni events occurred in time
interval [ti, ti + 1). The independent increments
mean that {A1, A2, ..., Ak-1} is an independent set
of events.

3. The occurrence of two or more events in a very
small time interval is practically impossible. Let
N(t) be the number of events occurred during
[0, t], then

0)1)((lim
0

=>
>− h

hNP
h

                                           (2)

In other words as ,0→h  the probability of two
or more events, P (N (h) > 1) approaches zero faster
than h does.

By the first condition the random variables
N(t1) - N(t2) and N(t1 + s) - N(t2 + s) have the same
probability mass functions, i.e. the probability of

Figure 1. Exponential probability distribution function for
various amounts of λ.

As mentioned before, random processes occur
in a way which the frequency distribution of their
inter-occurrence times of sequential events is
exponential. On the other hand, if the distribution of
inter-occurrence time of some sequential events is
exponential, the number of occurred events in a
fixed time interval will have the Poisson distribution.
Thus, the random Poisson occurrence [3] refers to
well behavior stochastic processes with Poisson
distribution for the rate of occurrence of events and
this should be distinguished from inter-occurrence
time distribution which is exponential.

One of the most important features of CV is
that it is an unit-less quantity, so it provides the
opportunity of comparing between data sets with
different units (like the height and weight of some
persons). Furthermore, if we calculate the CV of
a data set, (for example by dimension of time) a
constant number for the CV will be gained, inde-
pendent on the unit of numbers (day, hour, minute,
second, etc). If the CV of a set of numbers is equal
to zero, it can be concluded that the numbers are
equal and there is no variation through them.
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occurrence of n events in the time interval [t1, t2]
is the function of t2 - t1 and not of t1 and t2 inde-
pendently. Properties 1 and 3 result in the following
fact that the simultaneous occurrence of two or
more events is impossible, i.e. events occur one at a
time [3].

Suppose that events occur in time in a way that
satisfy the three above conditions, then if for any
interval of length t > 0, P (N(t) = 0) = 0, we will
have at least one event for any interval of length t
and it can be shown that in this case in any interval
of arbitrary length at least one event occur with
probability 1. Similarly if P (N(t) = 0) = 1 then in
any interval of length t no event will occur and in
this case any interval of arbitrary length will have no
events with probability 1. To avoid these cases, it is
assumed:

1)0)((0 <=< tNP                                             (3)

If random events occur in time and the three
conditions above are all satisfied, N(0) = 0 and for all
t > 0, 0 < P (N(t) = 0) < 1, then there exists a positive
number λ such as:

!
)())((
n
etntNP

tn λ−λ==                                      (4)

The meaning of the above statement is that for
all t > 0, N(t) is a Poisson random variable with
parameter λ  t. Hence E [N (t)] = λ  t and λ = E [N (1)].
It should be noted that the only unknown parameter
λ is equal to the expected number of events over a
unit time period. This is a very useful equality which
can be used to estimate λ in practice.

If the number of events N (t) occurring during a
fixed time interval of length t has a Poisson distri-
bution with parameter λ  t then the corresponding
process is called a Poisson process and λ is the
rate of the process [4]. Poisson processes are often
denoted by:

}0|)({ ≥ttN                                                              (5)

Let {N (t) | t ≥  0} be a Poisson process. Let X1
be the time of the first event, X2 the time elapsed
between first and second events, X3 the time
between second and third and so on. The sequence
of continuous random variables {X1, X2, ...} is the
sequence of interval times of the Poisson process.
Let λ = E [N(1)], then:

tetNPtXP λ−===> )0)(()( 1                              (6)

tetXPtXP λ−−=>−=≤ 1)(1)( 11                       (7)

It can be shown that in the case of a Poisson
process, as a consequence of the three assumptions,
the random variables in the sequence {X1, X2, ...}
are identically distributed. Therefore, for all n ≥ 1:
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F is called exponential distribution if for some
λ > 0:
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F(t; λ) is the cumulative distribution function for
Xn, n ≥  1.

It is easy to see that F(t; λ) is a distribution
function since the corresponding probability density
function
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is always non-negative and
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A continuous random variable X is called expo-
nential with parameter λ > 0 if its probability density
function is:
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2. The CV of Earthquake Occurrence Rate in
Iran

In order to assess the CV of earthquake occur-
rence rate in Iran, the country was divided into a
grid of one in one degree cells and the occurred
earthquakes during 1976 to 2008 from USGS website
[5] was extracted for each cell. Then the inter-
occurrence time between sequential earthquakes
for each cell was calculated and in this way our
primary data was gained. Then, using this data the
CV of earthquake occurrence rate for each cell
was calculated. It should be mentioned that this
calculation is repeated for threshold magnitudes 3,
3.5, 4, 4.3, 4.5, 4.6, 4.7, 4.8, 5 and 5.5 and those cells
which contained less than 5 earthquakes were
considered empty.
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We especially concentrated on regions which
had CV equal to one because the frequency distribu-
tion of the data in these regions was exponential.
Therefore, it can be concluded that the earthquakes
in these regions have occurred as independent
stochastic events and are not considered as chaotic
and we can take advantage of analyzing tools of
stochastic phenomena. For example, in some region
with CV equal to one, using the average occurrence
rate of last earthquakes, it is possible to determine
the occurrence time interval of the next event by
confidence level of 95%.

The results from regional calculations of CV are
shown by contours which in all of them the regions
without enough data are represented by white color
and the regions with CV around one (between 0.95
and 1.05) are considered as our target.

In Figures (2) to (5) which are related respec-
tively to the earthquakes greater than 3, 3.5, 4 and
4.3, the overall behavior of contours are the same

and some area other than Iran are included. In
Figures (6) to (9) which are related respectively to
the earthquakes greater than 4.5, 4.6, 4.7 and 4.8, it
is obvious that the regions without enough data
have increased and the overall CV have approached
to one (See the scale column).

Figure 2. Earthquakes greater than 3.

Figure 3. Earthquakes greater than 3.5. Figure 6. Earthquakes greater than 4.5.

Figure 5. Earthquakes greater than 4.3.

Figure 4. Earthquakes greater than 4.
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Figure 10. Earthquakes greater than 5.

Figure 9. Earthquakes greater than 4.8.

Figure 7. Earthquakes greater than 4.6.

Figure 8. Earthquakes greater than 4.7.
Figure 11. Earthquakes greater than 5.5.

Magnitude Scale Relationship 

Ml = Mw - 

Mw = 0.99  × Ms + 0.08 6.1 <  Ms ≤  8 

Mw = 0.67 × Ms + 2.7 3 ≤  Ms ≤  6.1 

Mw = 0.85  × Mb + 1.03 3.5  ≤  Mb ≤  6.2 

 

Table 1. Magnitude convertor formula.For earthquakes greater than 5 and 5.5, as shown
in Figures (10) and (11) the regions free of data
have not been specified and in conclusion they were
neglected due to the lack of data.

Therefore, as the above figures propose, we
selected M = 4.5 as the threshold magnitude and

performed our classification based on the CV
amounts in different regions using a magnitude
edited earthquake catalogue, see Figure (12).

In order to unify the different units for earth-
quake magnitude and to increase the accuracy of
selecting earthquakes, a magnitude convertor formula
[6] was applied to NEIC earthquake catalogue and
then the earthquakes greater than 4.5 were selected,
see Table (1).

According to Figure (12) there is a region within
latitude 35-38N and longitude 53-56E which its CV
of earthquake occurrence rate is around one and
less than it. Therefore, it is expected that events in
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Figure 12. Classification of seismogenic regions based on the CV amounts for earthquakes greater than 4.5.

Table 2. Inter-occurrence times of our data.

Figure 13. Frequency distribution of inter-occurrence times.

this area follow the stochastic processes pattern.
To investigate this idea, the frequency distribution
of the data should be calculated. The data is the
inter-occurrence times of sequential earthquakes
in the region from 1976 to 2008. In this temporal
and spatial interval, 81 earthquakes greater than 4.5
has been registered, therefore there were 80 time
differences as in our data. These data have been
shown in Table (2).

The numbers in Table (2) are time differences
between the occurrence of sequential earthquakes
in unit of day. Their CV is independent of time
unit (as mentioned before) and is equal to 1.133
and their average is equal to 146.873. There is an
interesting point about the constancy of average
amount, from stochastic phenomenology point of
view; the average of each 30-40 sequential num-
bers is almost equal to the total average and it is
confirmed that seismicity regime in this region is
well behaved and stable.

The other thing to be checked in order to make
sure about the stochastic characteristic of seismicity
regime in this area was the frequency distribution of
the data. The frequency distribution of these data
according to Figure (13) coincided the exponential
distribution curve with an acceptable accuracy.

The next step was to examine the predictability
of future earthquakes in this region by using the
rules and relations of the probability theory. It can be
shown that for the stochastic processes with tempo-
ral average β, the probability that the next event does
not take place in time interval t from the last one is:

80 Temporal Intervals between Sequential Earthquakes 

108.8684 35.36903 192.8134 488.5148 175.8917 

226.6734 387.9253 209.907 452.1418 18.77651 

124.2828 44.92582 86.291 189.0771 343.1318 

66.55239 67.91525 15.25433 21.47965 16.18153 

113.0151 0.019744 39.62213 47.78054 2.952722 

463.2528 0.004979 38.64066 0.197112 194.8437 

86.34789 0.023449 289.2736 82.46425 0.065842 

29.68835 8.22557 282.9923 412.235 0.600513 

100.9613 17.89911 11.25255 150.6276 24.2739 

472.144 121.9135 9.00033 100.3795 69.93556 

103.6654 657.6103 3.636673 6.990974 322.465 

2.930196 116.0371 245.3079 13.74526 385.9607 

149.8042 493.0078 80.53658 206.2831 50.80142 

126.4517 128.8011 37.42965 44.32275 403.1543 

495.3139 27.15274 0.135169 681.2739 120.5 

231.3685 64.66862 11.28886 80.31841 16.28322 
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P' = exp (- t / λ)                                                (13)

Therefore,

P = 1- P' = 1- exp (- t / λ)                                  (14)

is the probability of next event occurrence in time
interval t from the last event. Solving it with respect
to t:

t (P) = λ ln (1 / (1- P) )                                         (15)

Therefore, t (P) is the time interval from the last
event in which the next event occurs with probability
P.

Suppose that having the information pertaining
to 33 earthquakes and therefore having 32 data, the
aim was to determine how long should be elapsed
from the last earthquake occurrence until 34th earth-
quake occurs. To do so, the average of 32 data
should be replaced instead of λ and 0.7 instead of
P in Eq. (15). In this way t  (P) was calculated equal
to 190.861. Referring to Table (2), it is seen that
the 34th earthquake occurs 192.813 days after 33th

earthquake i.e. by two days difference with predicted
time interval.

In order to perform a more comprehensive
assessment of the success level of the above calcu-
lation, we repeated it for probabilities 0.6, 0.7, 0.8
and 0.9 to predict the time intervals number 32 to
the end. The first 31 data was skipped because much
data is needed to perform statistical calculations;
therefore the calculations began from 1990 i.e. 32
data which is the temporal distance between earth-
quakes 32 and 33. The result is shown in Table (3).

In this table, column N is the number of data,
column Data is the amount of real data occurred in
the past (temporal distances between occurred
earthquakes) and the left hand columns are predicted
time intervals (using formula 15) for occurrence of
N + 1th earthquake with probability 0.6, 0.7, 0.8 and
0.9, respectively. These numbers should be compared
with their own corresponding data (Nth data).

Whenever predicted time interval is smaller than
real data in each row, that cell has been shown by
gray. For example in column 0.6, there are 18 gray
cells and 32 white cells among 50 cells, hence 64%
of events have occurred in predicted time intervals
with 0.6 probability and this is an acceptable com-
patibility. These numbers for column 0.7, 0.8 and 0.9
are 68%, 78% and 86%, respectively. In conclusion
it can be said that the temporal seismicity regime in
this region obeys well-behavior stochastic processes
pattern available in statistics and mathematics.

Table 3. Calculations resulted from formula (15).

N Data P = 0.6  P = 0.7 P = 0.8 P = 0.9  

32 27.15274 152.13475 199.89955 267.22025 382.30575 

33 64.66862 148.02975 194.50573 260.00994 371.99013 

34 192.81345 145.2556 190.8605 255.13713 365.01872 

35 209.90699 146.2076 192.1115 256.80938 367.41116 

36 86.291 147.56431 193.89416 259.19241 370.8205 

37 15.25433 145.60727 191.32267 255.75491 365.90255 

38 39.62213 141.95088 186.51831 249.33258 356.71427 

39 38.64066 139.0956 182.76657 244.31735 349.53911 

40 289.2736 136.3669 179.1812 239.5245 342.68212 

41 282.99232 139.6667 183.517 245.3205 350.9743 

42 11.25255 142.65763 187.44695 250.57396 358.49029 

43 9.00033 139.42965 183.20551 244.90411 350.37857 

44 3.63667 136.30625 179.10148 239.41795 342.52965 

45 245.3079 133.2138 175.0381 233.9862 334.75859 

46 80.53658 135.29473 177.77237 237.64125 339.98776 

47 37.42965 133.92807 175.97663 235.24074 336.55342 

48 0.13517 131.76217 173.13071 231.4364 331.11063 

49 11.28886 128.96135 169.45054 226.51685 324.07234 

50 488.51482 126.4902 166.2035 222.1763 317.8624 

51 452.14185 133.0439 174.8148 233.6876 334.3314 

52 189.07708 138.6688 182.2058 243.56778 348.46671 

53 21.47965 139.3469 183.09678 244.75876 350.17062 

54 47.78054 137.04564 180.07301 240.71667 344.3877 

55 0.19711 135.28593 177.76081 237.62579 339.96565 

56 82.46425 132.78398 174.47334 233.23119 333.67839 

57 412.23498 131.7436 173.1063 231.4037 331.0639 

58 150.6276 136.1361 178.87794 239.11914 342.10215 

59 100.37945 136.16916 178.92134 239.17715 342.18514 

60 6.99097 135.40722 177.92018 237.83883 340.27044 

61 13.74526 133.22075 175.04724 233.99837 334.77598 

62 206.28312 131.2103 172.4056 230.46709 329.72387 

63 44.32275 132.15794 173.65075 232.13157 332.10519 

64 681.27394 130.6814 171.7106 229.5381 328.3947 

65 80.31841 138.51575 182.00467 243.29886 348.08198 

66 175.89174 137.5014 180.6718 241.51712 345.53289 

67 18.77651 137.86546 181.15022 242.15666 346.44785 

68 343.13178 136.0373 178.748 238.9455 341.8537 

69 16.18153 138.69953 182.24615 243.62167 348.54381 

70 2.95272 136.87787 179.85256 240.42198 343.96609 

71 194.84372 134.9333 177.2975 237.00648 339.07961 

72 0.06584 135.5562 178.11594 238.10051 340.64482 

73 0.60051 133.64781 175.60838 234.74848 335.84914 

74 24.2739 131.79923 173.17942 231.5015 331.20378 

75 69.93556 130.29845 171.20744 228.86542 327.43239 

76 322.46504 129.4036 170.0317 227.2937 325.18375 

77 385.96072 131.6179 172.9411 231.1829 330.748 

78 50.80142 134.53937 176.77985 236.31447 338.08958 

79 403.1543 133.3966 175.2783 234.3073 335.218 

80 120.5 136.4224 179.25409 239.62197 342.82153 

81 16.28322 136.09317 178.82149 239.04368 341.99419 
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3. Results and Suggestions

The following results are obtained in this study:
1. A new pattern has been presented to identify the

identical regions with the same seismicity rate in
Iran. In this pattern Iran is classified into four
different seismic provinces based on the amount
of CV in each province:
- Seismicity regime A with CV in interval 0.2-0.8;
- Seismicity regime B with CV in interval 0.81-

1.2;
- Seismicity regime C with CV in interval 1.21-

1.7; and
- Seismicity regime D with CV greater than

1.71.
2. In order to forecast the future earthquakes greater

than the threshold magnitude:
- Periodic and ordered patterns can be used in

regions with CV less than 0.2;
- Low-variance distributions can be used in

region A;
- Exponential distribution can be used in region

B;
- High-variance and power-law distributions and

patterns related to clustering in region C;
- Fractal analysis methods or chaos analysis

methods in necessary occasions (very great CVs)
in region D [7].

It should be notified that if the area of investiga-
tion consists of combination of regions, the most
severe method should be selected for analyzing, for
example in region 54-56E, 26-28N fractal analysis
should be applied.
3. It is possible to develop this work in order to

determine the threshold magnitudes correspond-
ing to CV = 1 in different regions in Iran in which
the events can be considered as well defined
stochastic events and also to take advantage of
exponential distribution for forecasting the
occurrence time of the next similar earthquakes
[3].
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