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During past decades, many control algorithms with some advantages/weaknesses
have been proposed. However, the most famous and historic algorithm which has
found widespread applications in different fields of science, is the family of optimal
control method (OCM). Today, this family includes many different approaches using
various performance indices in continuous or discrete domain of consideration. The
main stem of OCM is rooted in a simple definition, say performance index (PI), which
should be minimized with respect to the main independent variables of the system.
Although, different proposed algorithms are employed various performance indices
besides simple or stable weighting matrices, their performances are noticeably
similar. Extensive analysis shows that the main aspect, which results in reasonable
similar performances in spite of their assumption for determining control force, arise
from solving the Riccati matrix equation (RME) during their procedure or their
stability criteria. This idea is examined by introducing a new simple but unusual
assumption, named the simplified LQR (SLQR), via considering seismic behavior of
an eight-story shear type building structure.

A New View on Optimal Control Algorithms

Rahman Mirzaei 1* and Omid Bahar 2

1. Ph.D. Candidate, School of Engineering, Science and Research Branch, Islamic Azad
University (IAU), Tehran, Iran, * Corresponding Author; email: rah.Mirzaei@gmail.com

2. Assistant Professor, Structural Dynamics Department, International Institute of Earthquake
Engineering and Seismology (IIEES), Iran

Keywords:
Optimal control method;
Riccati matrix equation;
Simplified LQR; SLQR;
AMD

1. Introduction

Today, it is a common believe that active struc-
tural control systems regardless of their practical
drawbacks may be a major part of new or existing
structures in the near future. It is an excellent anti-
seismic solution for designing and/or enhancing
performance of structures against extraordinary
environmental loads. Application of active structural
control theory to the civil engineering structures is
well documented in the literatures [1-2]. In control
theory, the simple widespread algorithms of optimal
control methods are now a large family, which are
designed based on an optimizing procedure using
different approaches like the calculus of variations,
Pontryagin’s maximum principle, Bellman dynamic
programming, or Krotov method [3]. Among them, it
can be mentioned to the classic optimal control theory
[2-3], the instantaneous optimal control method [4-
5], generalized optimal active control algorithm [6],

the instantaneous optimal Wilson-θ control method
[7], and the discrete instantaneous optimal control
method [8]. These algorithms by minimizing a proper
regulator or performance index defined based on the
parameters of the structure or external loads provide
control forces in order to achieve the best perfor-
mance of the system in view of optimality. Among
different proposed methods, the most famous and
historic algorithm which has found widespread
applications in different fields of science, is linear
quadratic regulator, LQR. It is also superior, because
of its simple procedure and ease of implementation
on actual large-scale systems [4]. Only classical
closed-loop control is applicable to the structural
control problem. However, since the Riccati equa-
tion is obtained by ignoring the earthquake excitation
term, classical closed-loop control is in fact approxi-
mately optimal and does not satisfy all optimality
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conditions. On the other hand, although the classical
open-closed loop and open loop algorithms are
superior to the closed loop algorithm, since they
need prior knowledge of the entire external loading
time history are not applicable [2].

To overcome shortcomings of the classical opti-
mal control algorithms, several methods have been
proposed. One of these algorithms, which has already
attracted lots of attention is instantaneous optimal
control method introduced by Yang et al [4-5] and
later developed in a discrete form by Bahar et al
[8-9]. This procedure has a main advantage that is
on-line controlling of structures, especially against
earthquake load excitations. However, this algorithm
is very sensitive to time steps such that proper
selecting of weighting matrices is very difficult
[9].

Cheng and Tiang [6] developed a technique called
the generalized optimal active control (GOAC) for
seismic-resistant structures. They have defined a new
performance index in discrete time domains, in which
the control time interval is divided into infinitesimal
distance as small as the time step size. Optimal con-
trol force is then achieved via minimization of the
new defined performance index. Bahar et al [7] have
introduced the instantaneous optimal Wilson-θ
method in which dynamic equation of motion is
discertized by means of the Wilson-θ method. In spite
of suitable performance; however, the proposed
algorithm, like other algorithms in this class, is
sensitive to change of time increment. To suppress
this deficiency, Yang et al [10] using the Lyapunov
direct method proposed a stable weighting matrix that
highly improves efficiency of the method.

In this paper, a new simplified algorithm based
on conventional closed loop linear quadratic regula-
tor but an unusual criterion is defined. The proposed
method using an assumption presents an easy way to
implement optimal algorithms in structural control.
Gain matrix is computed directly from control force
derivative; therefore, control force is obtained as fast
as possible. This algorithm solves time increment
problem, but in general, determined control force may
not always guarantee the stability of the building and
also high efficiency of the control system. Hence,
stability of the system is achieved by means of the
Lyapunov stability criteria, which results in a proper
weighting matrix.

2. The Family of Optimal Control Methods

For a building equipped with an active control
system subjected to a ground excitation, the linear
equations of motion can be written in matrix form as:

)(tDuxMEKxxCxM g +−=++ &&&&&                           (1)

where x={x1, x2,…, xn}
T is the n-dimension vector

of the relative displacements, M, C and K are n×n
matrices of, respectively, mass, damping and stiff-

ness of the structure, and gx&&  is the ordinates of a
ground acceleration record. E is an n×1 influence
vector of the ground forces, Dn×m is the location
matrix of the control forces and u(t) is an m×1
control force vector applied by m actuators. The
equation of motion can be easily written in terms of
the state space variable, Z, as follows:
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where t0 is the initial time instant; vector Z(t) is the
state space vector; and matrix A is the system
matrix, defined as follows, respectively:
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Matrix B, and vector H are given as follows:
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By designing a proper controller, control force,
i.e. u(t) in Eq. (1) or (2), is determined from the
measured structural response and/or external load-
ing. Various algorithms are proposed, but here, we
only paid attention to the family of optimal control
methods. In this family by introducing a performance
index, it is tried to maximize the reduction of struc-
tural response with minimum control energy or
control force consumption. Different algorithms have
been used various performance indices, which leads
to variety of control gains. In the following parts, the
concept of a few familiar performance indices and
determination of feedback gain and control force
ones are presented in brief.

2.1. Linear Quadratic Regulator-Closed Loop
(CCLQR)

In LQR method, the optimum control forces are
determined via tuning some weighting matrices
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during the minimization of the performance index,
J, defined by:

∫ +=
ft
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in which Q is a 2n×2n positive semi-definite matrix,
R is a  r×r   positive definite matrix and tf is the
terminal time that should be longer than earthquake
duration [2]. To minimize the performance index J
subjected to the constraint given by Eq. (2), the
necessary conditions are as follows:

)(2)( tQZtAT −λ−=λ&                                          (6)
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in which λ(t) is a 2n vector representing the Lagrange
multiplier. The optimal control vector u(t), the
Lagrange vector λ(t), and the state vector Z(t) can
be solved using Eqs. (2), (6) and (7). Notice that the
control vector u(t), in Eq. (7), is directly related to
the Lagrange vector λ(t). If the control force is
assumed to be proportional to the state vector Z(t),
the LQR control is named optimal closed-loop,
CCLQR, control. In this case, one has:

)()()( tZtPt =λ                                                    (8)

where P(t), called the Riccati matrix, is obtained by
solving the following nonlinear matrix equation:
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There are two assumptions to solve Eq. (9); (1)
the external excitation, f(t), is equal to zero or it is a
white noise stochastic process, (2) the Riccati
matrix, P(t), in most cases can be approximated by
a time-invariant matrix P. Hence, Eq. (9) reduces to
the following equation:
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Upon this equation, a constant control gain matrix
is attained as follows:

PBRG T1

2
1 −−=                                                 (11)

Choosing proper Q and R weighting matrices, and

solving the matrix Riccati equation, Eq. (10), a spe-
cific semi-optimal control gain matrix, G, is obtained.

2.2. Instantaneous Optimal Control (IOC)

Yang et al [5] have developed Instantaneous
optimal control (IOC) algorithm. The basic idea of
the derivation of the instantaneous optimal control is
relied on assuming a time dependent quadratic
performance index without integration over the time,
as follows:

)()()()()( tRututQZtZtJ TT +=                            (12)

where Q and R are before mentioned weighting
matrices. If the direct solution of Eq. (2) is consid-
ered and trapezoidal rule is employed to compute
the consequent integration, we obtain [6, 8]:
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By minimizing performance index J(t) subjected
to the constraint given in Eq. (13), the necessary
conditions are attained as follows:
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where λ is a Lagrange multiplier vector. Based on
Eq. (15), the active control force is directly propor-
tional to the time increment λt, which may cause
decreasing in control efficiency by using smaller time
increment [7, 9]. To overcome this shortcoming
and also guarantee the stability of the controlled
structure, Yang et al [10] have proposed a method
to determine stable weighting matrices using the
Lyapunov stability theory. In this method, by
choosing a proper positive semi-definite matrix, I0,
and solving the following Riccati matrix equation,
the appropriate continuous Q weighting matrix is
determined:

00
1 =++− − IQAQBtQBRQA TTT ∆                    (16)

2.3. Generalized Optimal Active Control Algorithm
(GOAC)

Cheng and Tian [6] developed a technique called
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GOAC algorithm for seismic-resistant structures.
They have defined a new performance index in
discrete time domain, in which the control time
interval is divided into N segments similar to time
step size. Optimal control force in this case is achieved
via minimization of the new defined performance
index:
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This performance index is integrated step by step
in discrete time domain. In each step, the end of the
domain is assumed not to be fixed, which leads to a
variational problem with transversality condition at
the end point. This procedure yields to the following
feedback gain matrix:

SBRG T1−=                                                        (18)

and the control force is defined as:

)()( 1 tSZBRtu T−=                                              (19)

The gain matrix is invariant with respect to time
and it is valid at every end point. It is clear that if S
matrix is chosen from the algebraic Riccati matrix
equation like Eq. (10), the algorithm will be the same
as the classical optimal control, closed-loop control.
However, in general, there is no any suggestion to
select a proper S such that stability of the whole
building during control time is guaranteed and also
the control system acts with high efficiency.

2.4. Instantaneous Optimal Wilson-θ Control
Method

To obtain a stable control method against earth-
quake ground motions, it seems using an implicit
numerical method is a very useful tool for discreti-
zation of the dynamic equation of motion, Eq. (1)
[7, 9]. Bahar et al [7] by employing the Wilson-θ
method, which is an unconditionally stable method,
changed Eq. (1) in a manner that all responses of
the controlled structure in the next time have been
defined as a function of the responses in the instant
time. Here, the procedure is briefly outlined consis-
tent with the subsequent derivations of the control
algorithm:
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where all of the parameters used in Eqs. (18) and
(19) are defined as
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In this procedure, θ is 1.4. The time-dependent
performance index, J(t), were modified to enhance
serviceability of the structural system for occupant's
comfort by adding the acceleration term, as follows
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in which n×n positive semi-definite weighting matri-
ces, Qis, are respectively related to displacement,
velocity, and acceleration of the entire structure. By
minimizing the time-dependent performance index,
J(t), subject to discrete form of the equation of
motion at each time instant, the control force vector,
u(t), is generated by complete feedback of displace-
ment, velocity, and acceleration vectors alone as
follows:
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where superscript (-T) means transpose of inverse
matrix. Dependency of the instantaneous optimal
control force vector using the Wilson-θ method
on the time interval is apparent by presence of
parameters e2, e4, and Kw in Eq. (22).

2.5. Discrete  Instantaneous  Optimal  Control
(DIOC)

Bahar et al [8] employs digital state space
representation of Eq. (2), have introduced Discrete
Instantaneous Optimal Control (DIOC) method as
follows:
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where Ad, Bd, and Wd are transition matrices corre-
sponding to A, B and H respectively and are defined
as follows:
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Bahar et al [8-9] have presented a new definition
for quadratic time dependent performance index in
discrete form as follows:
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This means decreasing energy supply for active
control system at the instant time to achieve the best
decreased responses of the structure in the next
time. By minimizing J(t) subjected  to  the constraint
of Eq. (26), the control force vector is obtained as
follows:
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In order to ensure the stability, Bahar et al [8-9]
proposed a procedure based on the Lyapunov stabil-
ity method in discrete form. In their proposed
method, the stable discrete weighting matrix Q is
computed from the following equation:
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In which I0 is an arbitrary positive semi-definite
matrix. It can be seen that this equation is also the
matrix Riccati equation, which uses the discrete
form of the controlled structure.

3. Simplified LQR Method (SLQR)
Assume that the previously defined Lagrange

multiplier in Eq. (6) is not a time-dependent variable.
This may not be true because it is directly related to
the state vector, and we know that the state vector is
not a constant function. In reality, this assumption is
an irrational statement, but it is a little better than
the assumption of zero external force during control
time in Eq. (9). Now, if we accept this assumption,
the first derivative of the Lagrange multiplier with
respect to time is set to zero, and we have:

)(2)( tQZAt T−−=λ                                           (31)

Substitute Eq. (31) in Eq. (7), we obtain:
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This is a simple solution for Eq. (9) in continuous
time based on the assumption of Eq. (31). In this
method, named Simplified Linear Quadratic Regula-
tor (SLQR), control force is directly related to the
weighting matrix. Extensive analysis shows that this
control force, because of its unusual assumption,
neither guarantees the stability of the structure nor
presents high efficiency of the control system. Hence,
selecting proper and stable weighting matrices is a
vital and necessary solution for the problem.

As mentioned before, Yang et al [9] by using the
Lyapunov stability theory satisfied the necessary and
sufficient conditions for the Instantaneous Optimal
Control method (IOC). Similar condition is also
satisfied by the discrete Instantaneous Optimal
Control method, DIOC, results in the Discrete Stable
Weighting (DSW) matrix [8]. Now, in order to
ensure about the stability of SLQR and providing a
good performance, finding a proper stable Q weight-
ing matrix is inevitable.

Based on the Lyapunov direct method, a system
is stable if a scalar Lyapunov function V(Z)  > 0
for Z ≠ 0, also V(Z) = 0 for Z = 0, and V(Z) ∞→  as
Z ∞→  exists such that its first derivative with
respect to time is negative definite for all Z, i.e.

.0<V&  Based on this assumption, consider a positive
definite matrix P, such as:

0)()( >ZPVZVT                                             (33)

which is a possible Lyapunov function. Consider P
is the coefficient of Z(t) in Eq. (31) and replace it in
Eq. (33), the Lyapunov function becomes as follows:

0)()(2 >− − ZQVAZV TT                                   (34)

First derivative of the Lyapunov function consid-
ering Eq. (2) and (31) is given as follows:

)(]

)[()(
1

11

tZQABQBRAQAA            

QABBRAQQAAtZZV

      

                

TTTTT

TTTTTT

−−−−

−−−−

−

−−−=&

  (35)

If the weighting matrix Q is selected such that the
bracket in Eq. (35) to be negative definite, it is a
stable weighting matrix. As a sufficient condition,
we can assume that the sum of terms of the bracket
in Eq. (35) is equal to a negative definite matrix -I0
where I0 is an arbitrary positive definite matrix.
Using this definition, we get:
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If we replace QA T−  in the above equation by Q
the following equation is obtained:
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and by selecting Q  as a symmetric matrix, a Riccati
type matrix equation is attained as follows:
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Now if positive definite matrix I0 is properly
selected and Eq. (38) is solved for matrix, Q stable
matrix Q may be obtained from A-TQ.

4. Numerical Example

In order to investigate performance of different
control methods and specially the proposed one, an
eight-story shear-type building structure is considered.
Properties of the building are defined as follows: the
floor mass of each story is 345.6 tons, the elastic
stiffness of each story is 3.404×105 kN/m, and the
internal damping coefficient of each story is 2937
tons-sec/m. The input excitation is the N-S compo-
nent of the 1940 El-Centro (Imperial Valley) earth-
quake record with 0.33 g peak ground acceleration
and about 54 seconds time length. Characteristics of
the implemented active mass damper/driver (AMD)
system on the top floor are as follows: The mass is
29.63 tons, the tuned frequency is 98% of the first
vibration frequency of the building, and the damping
is 25 tons-sec/m.

In addition, as a passive system, a tuned mass
damper (TMD) with similar dynamic specifications
without needing external energy or inserting control
force to the building implemented on the top floor.
Effectiveness of the various optimal control algorithms
is investigated in two different cases by comparing
the maximum building responses in different condi-
tions: without a control system, equipped with
passive control system, and equipped with active
control systems using different control laws. Two
different cases are separated by using (I) general
selected weighting matrices, (II) stable weighting
matrices. The control algorithms are used in
comparison includes six control methods as: (1) the
classic closed-loop optimal control, CCLQR, (2) the

instantaneous optimal control, IOC, (3) the general-
ized optimal active control, GOAC, (4) the instanta-
neous optimal Wilson-θ control method, (5) the
discrete instantaneous optimal control, DIOC, and
(6) the new proposed simplified linear quadratic
regulator method, SLQR. To achieve an acceptable
and reliable judgment, we imposed that the average
required control force (ACF) for all control systems
is the same. It seems this is the only way that
comparing between performances of different
control systems is admissible. ACF is determined by
the integration of the absolute value of the entire
instant control forces over the time divided by the
control time duration. It is assumed to be equal to
72.68 kN. It means the power-supply system for all
control systems is identical, but the instant maximum
control forces of the control systems are not neces-
sarily the same.

4.1. Case I: Selecting General Weighting Matrices

In case I, all the control algorithms work with
general selected weighting matrices. In other words,
different kinds of symmetric positive semi-definite
matrices, as Q matrix, have been investigated and
the matrix presenting the best performance in the
specific value of ACF is selected. This is a cumber-
some and time consuming procedure because it needs
continual analysis by different matrices or various
parameters for a proper selected matrix. The selected
weighting matrices are as follows:

IOC Method.  Yang's proposed weighting
matrix is used for IOC method [6], except that
we have changed it to a symmetric form and
multiplied it to 25.271. The elements of this matrix
are as follows:
















=

2222

1211

0

KKS
KKE
SE

Q
T

T
                                       (39)

in which the submatrices are as follows: ET
 = [-33.5,

-67, -100.5, -134, -167.5, -201, -234.5, 268, 375, 67.5,
135, 202.5, 270, 337.5, 405, 425.5], ST=[-33.5, -67,
-100.5, -134, -167.5, -201, -234.5, -268, 32.2, 5.8, 11.6,
17.4, 23.2, 29, 34.8, 40.6], and K11 = 540, K12= K21 =
32.2, K22 = 5.7.

GOAC and DIOC Methods. General weight-
ing concern matrices with GOAC and DIOC
methods are defined as follows:
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where γK  is the entire stiffness matrix of the build-
ing, just γ has been substituted by a small number
instead of the K99 entry of this matrix. In order to
obtain the required ACF and proper performance,
the coefficients α, β, and γ are respectively defined
as 1×104, 92.025 and 21.

Wilson-θ Method. This method needs to define
three different characteristic-related weighting
matrices as follows:
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where Q1, Q2 and Q3 are acceleration, displacement
and velocity related weighting matrices. Coefficient
β is equal to 8920 and R is selected such that ACF
reaches to the desired value.

SLQR Method.  The following weighting
matrix selected for SLQR method presents the
best possible performance without indication of
instability in the controlled building:
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in which I is the unit matrix related to the dis-
placement response of the building. Defining a
velocity-related coefficient matrix in Eq. (43),
results in instability.

Matrix R. R matrix is defined such that the
average control forces of all the mentioned control
systems are adjusted to the specified value. The
values of R matrix for different optimal control
methods are tabulated in Table (1). Because, there
is only one AMD installed at the 8th story, R matrix
is a number.

Table 1. The values of R for different optimal control methods
using a general weighting matrix.

IOC GOAC Wilson-q DIOC SLQR 

0.00101 0.0014 0.001 0.00095 0.652 

4.2. Case II: Selecting Stable Weighting Matrices

In order to find stable weighting matrices for
each optimal control method, their concerned Riccati
matrix equation should be solved. Coefficients of
the Riccati matrix equations for each method are
composed of special continuous or discrete matrices
of the system. By solving the equation, an exclusive
stable weighting matrix for each method will be
obtained.
CCLQR and GOAC Methods. The weighting
matrix Q is selected as follows:
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where K and M are the matrices with the dimension-
less numerical values of the stiffness and mass
matrices of the controlled building, neglecting the
stiffness and mass values of the active mass damper/
driver. Extensive analysis shows that such arrange-
ment of weighting matrix results in higher perfor-
mance of the control system than selecting unit
matrix arrangement, especially when the average
control forces are limited [8].

IOC, and DIOC Methods. For other optimal
control algorithms in order to determine a proper
stable matrix, there is a common positive definite
matrix, named I0, which must be defined a priori.
We have found that this arrangement is a proper
matrix for achieving the stable matrix:
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
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γ

=γ
21

1211

K
KK

K   (44)

where M is mass matrix of the entire controlled
structure, and Kγ is constructed using submatrices
of the entire stiffness matrix of the building, γ is an
arbitrary scalar value related to the driver mass stiff-
ness. The value γ is selected as small as the Kg is
still a positive definite matrix. Coefficients α, β, γ
and also the value of R matrix are found such
that efficiency of the control system is high and
the average required control force is equal to the
specified value. Based on this assumption, for IOC
method, the coefficients of α, β, and γ are respec-
tively assigned to 876.2, 100, and 21. Similarly, these
parameters for DIOC method are equal to 4×103,
32.275, and 21, respectively.

SLQR Method. In order to achieve proper
performance of SLQR method, the positive definite
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matrix I0 is chosen similar to the definition of matrix
Q in Eq. (43). Hence, appropriate Q  and then Q is
determined as ATQ.

Matrix R. The values of R matrix for different
optimal control methods using stable weighting
matrices are tabulated in Table (2).

CCLQR / GOAC IOC DIOC SLQR CCLQR /GOAC 

0.0003765 0.0835 0.88 0.000393 0.0003765 

Table 2. The values of R for different optimal control methods
using a stable weighting matrix.

5. Results and Discussion

Linear time history analysis for various algorithms
and related weighting matrices are carried out. In
each case, maximum responses of the building and
control system are determined. Take notice that all
the average control forces are the same. It means
that all the control systems need a similar amount of
energy supply, although the maximum control forces
may be different.

5.1. Response of the Building

Case I. Maximum responses, displacement,
velocity and acceleration of the floors of the building
controlled by different optimal control algorithms
using general selected weighting matrices are com-
pared together in Figure (1). Also, results of the
maximum story drift ratios are shown in Figure (2).

Figure 1.The maximum responses of the floors, comparing between different optimal control algorithms using general selected
weighting matrices.

Figure 2. Maximum drift ratios of the floors, comparing between
different optimal control algorithms using general
selected weighting matrices.

It can be easily recognized that maximum floor
responses of the building equipped with a passive
mechanism are slightly better than the building
without control,the reason of which, in this case, may
be considered as the tuning of the control system for
an effective active rather than passive action.

Extensive efforts show that finding proper
general weighting matrix for SLQR, which guaran-
tee stability of the controlled building, is very
difficult. Without having a plan to form such weight-
ing matrix, the controlled building is highly vulnerable
to instability, and efficiency of the control system is
very low. As it may be seen in Figure (1), results of
SLQR are only a little better than that of the passive
control system. It means that, this method without
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using stable weighting matrix if it produces a stable
condition needing a large amount of control forces
to be efficient. The result for SLQR is certainly
acceptable because this method has not a logical
procedure to determine control force.

On the other hand, the other methods, i.e. IOC,
GOAC, Wilson-θ, and DIOC using general selected
weighting matrices perform such that their efficiency
in controlling all the responses of the building are
acceptable. In Figure (2), comparing results of the
maximum drift ratios obtained from different optimal
control algorithms confirm again the above-mentioned
results. It is mentioned that in Case I, stability crite-
rion should be carefully observed by the designer. In
other words, there are infinite general weighting
matrix, which may produce instability of the building.
Hence, a designer will never really be sure of select-
ing a proper weighting matrix for different conditions
or excitations.

By comparing maximum responses of the floors
in Case I, DIOC algorithm using general weighting
matrix is recognized as the best control method to
decrease building responses. Results of this method
as a limit for using general weighting matrix are
compared with the methods in Case II.

Case II. In Figure (3) the maximum responses
of the floors due to performing different optimal
control algorithms using determined stable weighting
matrices are compared together and with the best of
the previous case. Maximum drift ratios are shown
in Figure (4). Results show that DIOC method using

Figure 3. The maximum responses of the floors, comparing between different optimal control algorithms using general selected
weighting matrices.

Figure 4. Maximum drift ratios of the floors, comparing between
different optimal control algorithms using stable
weighting matrices.

general weighting matrix is very good in controlling
acceleration responses, but all the optimal control
methods using stable weighting matrix are more
successful in controlling displacement responses.
As mentioned before, GOAC by using a stable ma-
trix like P matrix is completely the same as CCLQR.
Therefore, it may be said that all the family of
optimal control algorithm either classic, general, or
instantaneous branch by using a determined stable
weighting matrix perform very close together such
that their differences are neglegible. Results shown
in Figure (4) confirm the above-mentioned results,
too.

Although differences are very small, it seems the
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efficiency of  DIOC method is the highest. The
efficiency of IOC using stable weighting matrix is
very close to that of DIOC method specially it
performs slightly better in decreasing acceleration
responses. Performance of the new proposed method,
SLQR, is completely similar to CCLQR method. It
is strange because SLQR method has not proposed
based on logic criteria, but it is designed by an
irregular assumption. So, well behavior of the
controlled building using SLQR algorithm is rooted in
satisfying stability criteria to obtain their specific
stable weighting matrices. In this view, all mentioned
optimal methods of Case II have a common founda-
tion such that they should solve the matrix Riccati
eqation either during their procedure like CCLQR
to determine P matrix, or during determining stable
weighting matrices like IOC, GOAC (when using P
matrix), DIOC, and SLQR. In other words, all the
discussed optimal procedures presented here in
spite of their various basic assumptions to determine
control forces by solving their concern matrix
Riccati equations present robust control systems with
high efficiency such that they guarantee stable
responses of the controlled building.

Base Shear. Maximum base shear reduction of
the building due to earthquake excitation for various
passive and active control systems are determined.
Also, their reductions with respect to the base shear
of the building without control system using general
weighting matrices are determined and presented in
the second column of Table (3). Results show that

Max Driver Mass Responses 
Used Method Max Base Shear 

Reduction (%) 
Max Control Force 

(kN) Displacement (m) Velocity (m/s) Acceleration (m/s2) 
CCLQR/GOAC 51.50 702.96 1.46 8.41 49.60 

IOC 51.30 661.68 1.32 7.38 50.50 
DIOC 54.70 637.13 1.43 8.29 48.90 
SLQR 50.50 713.05 1.48 8.51 50.90 

Max Driver Mass Responses 
Used Method Max Base Shear 

Reduction (%) 
Max Control Force 

(kN) Displacement (m) Velocity (m/s) Acceleration (m/s2) 
Passive Control 16.60 --- 0.61 3.61 19.90 

IOC 42.20 655.13 1.73 10.76 64.60 
GOAC 43.20 735.00 1.17 6.64 48.10 
DIOC 43.00 738.61 1.17 6.65 47.80 

Wilson-θ 44.60 810.08 1.22 6.11 42.20 
SLQR 29.90 613.79 1.95 11.53 71.00 

Table 3. The maximum values of base shear reduction and control system responses by use of general selected weighting
matrices.

Table 4. The maximum values of base shear reduction and control system responses by use of stable weighting matrices.

the best performance of the base shear reduction is
related to the Wilson-θ method, about 45%, and the
worst performace belongs to SLQR, about 30%.
Base shear reduction of control system using stable
weighting matrix are presented in the second column
of Table (4). It is clear that all the methods have very
good performances among SLQR method presents
51% reduction. DIOC method with 55% reduction
in base shear of the controlled building is the best.

5.2. Response of the Active Driver Mass

The maximum control force and driver mass
responses for different control systems using gen-
eral or stable weighting matrices are respectively
presented in the columns 3 to 6 of Tables (3)  and  (4).
Since, the passive system is excited by the responses
of the building, the driver mass responses are much
smaller in comparison with other systems. Although
all the average control forces (ACF) of control
mechanisms are the same, they have different
maximum control forces. This need is only likely for
a fraction of a second, but the control system should
have potential for generating this control force. There-
fore, the control systems need more maximum
control force, may be naturally more expensive than
the others. In this view, it seems that providing
energy supply for IOC and SLQR algorithm are
cheaper, but responses of the control system are too
high to be efficient. Also, the Wilson-θ method needs
large amount of energy to generate such large
instant control force. Hence, GOAC and DIOC
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methods with a reasonable maximum control force
and smaller driver mass responses are acceptable
control algorithms for Case I.

Generally speaking, when control systems using
stable weighting matrices, Case II, the need for
maximum control force are reduced but control
system responses are increased. In this regard,
performances of the control systems are very close
together. The best performance belongs to IOC
method, then DIOC method and after that other
methods have the same performance. Performance
of SLQR and CCLQR methods are very similar.
Similarities of these two methods are emphasized on
the mentioned fact: solving the matrix Riccati
equation to determine stable weighting matrix as a
coefficient of the gain matrix is more important than
the criteria used to define control force.

5.3. Frequency Response Function

Frequency response function (FRF) of a controlled
system shows location of its main frequencies and its
sensitivity (amplification or attenuation) to the
external disturbances at a glance. In Figure (5), FRF
plots of the building controlled by algorithms of
Case I are shown. Two specific behaviors are
recognizable. The first one emerged in Passive,
SLQR, and IOC methods, divide energy of the first
mode into two distant separate observable modes with
lesser power. The second one emerged in GOAC,
Wilson-θ, and DIOC methods, alleviate the power of
both first and the second modes of the building. This
difference returns to the element arrangements of
the selected weighting matrices. Extensive analysis
shows that the second group presents also more
decrease in power of the second mode. Referring to

Figure 5. Frequency responses function of the controlled
building, comparing between different optimal control
algorithms using general selected weighting matrices.

Figure (1) it is seen that more effectiveness of a
control system on the higher modes results in smaller
acceleration responses of the building.

In Case II, behaviors of the different control
systems through using the stable weighting matrices
are very close together, Figure (6). It is seen that
amplitude of the first mode concern to all methods
are smaller than that of DIOC with general weight-
ing matrix. Therefore, we expect that responses of
the floors are at least slightly smaller for Case II,
refer to Figure (3). On the other hand, effectiveness
of DIOC with general weighting matrix on the 2nd

and 3rd mode amplitudes is recognizable in accelera-
tion responses of the building, refer to Figure (3).
However, this is not the only effect, because both
DIOC* and IOC present good behavior on the
acceleration responses control especially for higher
floors. Actually, moving frequency location besides
decreasing its amplitude may alter the behavior of
the building. In addition, this matrix is not easily
accessible unless checking all the alternate defini-
tions of weighting matrices for a special building.

Figure 6. Frequency responses function of the controlled
building, comparing between different optimal control
algorithms using stable weighting matrices.

5.4. Stability Criteria

In order to consider stability margin of the
controlled building in Figure (7) complex frequencies
of the system matrix concern to the considered
building without control, with passive control, and
with different active controls are compared together.
They all show good performances. Their marginal
stability, i.e. the distance of the frequencies location
to the unit circle from the control systems are very
close, too. The only difference is for DIOC using
general weighting matrix. It has completely changed
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the location of all the frequencies of the primary
building inside the unit circle. Hence, one goal for a
designer may be selecting general weighting
matrices such that they move the main frequencies
of the controlled building inside the unit circle as
much as possible.

As a special view to SLQR method, it seems that
SLQR moves the complex frequencies of the
controlled building more inside the unit circle. This
means SLQR method using stable weighting matrix
produce large enough marginal stability of the
controlled building such that it may perform well
against external loadings. Robustness of the control
system is not related to their assumption but to their
guarantee of satisfying extra stability criteria. Thus,
the building equipped with an active mass driver/
damper using SLQR algorithm is stable enough to act
against strong ground accelerations.

6. Conclusions

There are many optimal control algorithms, which
some of them like the classic optimal control, the
generalized optimal active control and the instanta-
neous optimal Wilson-θ control method are inherently
robust control methods. But, in some of them, like
the instantaneous optimal control or discrete instan-
taneous optimal control method, stability criteria, or
generating weighting matrices are not satisfied
during determination of control forces. Therefore,
performances of different optimal algorithms are
evaluated in two separate cases. Case I concerns

Figure 7. Stability diagram of the controlled building, comparing
between different optimal control algorithms using
general or stable weighting matrices.

with the optimal control algorithms like IOC, GOAC,
Wilson-θ, and DIOC methods using general selected
weighting matrices. Case II, concerns with the
optimal control algorithms like LQR, IOC, and DIOC
methods using stable weighting matrices. These
methods have a logic base and routine procedure to
determine control forces. Extensive analysis shows
that finding proper general weighting matrices for
control methods with high performance such that it
guarantees the stability of the controlled building are
a cumbersome and time-consuming procedure. On
the other hand, determining weighting matrix of the
methods in Case II are much simpler and their
performances are much better than that of Case I.
Evaluations show that using stable weighting matrix
by solving the matrix Riccati equation results in a
very good performance of a control system. In order
to evaluate this claim, an irrational and illogical
procedure, named Simplified Linear Quadratic Regu-
lator (SLQR), which neither guarantees stability of
the controlled building nor presents high performance
of the control system are proposed. Hence, by using
the Lyapunov stability theory, a procedure to achieve
stable weighting matrix, Q, is presented. Performance
of SLQR in comparison with the other mentioned
optimal control algorithms is examined. Extensive
analysis shows that efficiency of the proposed method
using a stable weighting matrix is very similar to the
other mentioned methods. This is basically because
the family of the optimal control methods solving
the matrix Riccati equation either during their
procedure, like LQR method, or during satisfying the
stability  criteria, like IOC, DIOC and SLQR, in spite
of their assumption for determining control forces,
guarantee robustness and stability of the controlled
structure and present high efficiency of the control
system.
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