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In this paper, a mathematical model is presented for free vibration analysis of
symmetric plan framed tube systems in tall buildings. Then, a closed form solution
is derived for obtaining natural frequencies of framed tube structures. The analysis
is based on continuum approach in which the framed tube structure is idealized
as composed of four equivalent orthotropic plate panels. Therefore, framed tube
structure is replaced by an idealized cantilever continuum representing the
structural characteristics. Using the analytical method based on the Hamilton's
principle and theory of differential equation by considering boundary conditions
and normalization of parameters, the governing equation for free vibration of the
problem is developed, and the corresponding eigenvalue equation is then derived.
A theoretical method of solution is proposed to solve the eigenvalue problem, and a
general solution is given to determine the natural frequencies of the framed tube
structure. By following the proposed calculation procedure, frequencies of the free
vibration are quickly determined. The proposed method for predicting the natural
frequencies of framed tube structures is shown to give good agreement with those
obtained from computer analysis; thus, the proposed method offers a simple and
efficient, yet accurate, means for free vibration analysis of framed tube systems in
tall buildings.
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1. Introduction

For structures of extreme height, it is economical
to utilize the exterior shell of the structure to resist
lateral loads. Rather than individual elements provid-
ing lateral stiffness in a flexural or shear mode, the
framed tube incorporates the entire building plan in
resisting lateral load. Upon lateral loading, one-half
of the perimeter columns will be in tension and the
other half in compression. The primary characteris-
tic of a tube is the employment of closely spaced
perimeter columns interconnected by deep spandrels,
so that the whole building works as a huge vertical
cantilever to resist overturning moments [1-2].

Besides its structural efficiency, framed tube
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buildings leave the interior floor plan relatively free
of core bracing and heavy columns, enhancing the
net usable floor area thanks to the perimeter framing
system resisting the whole lateral load. This system
was first used for the Dewitt-Chesmut Apartment
Building in Chicago in 1963. It has been used
successfully in buildings upwards of 70-80 stories
including the 82 storey Standard Oil Building.

Many researchers have studied static and dynamic
behaviour of framed tube systems in past decades.
Approximate static analysis of framed tube systems
based on equivalent orthotropic tubes were presented
by Coull and Bose [3-5]; Coull and Ahmed [6];
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Ha et al [7]; Foutch and Chang [8]; Takabatake et al
[9] and Kwan [10]. They replaced each tube grid
with an orthotropic plate with properties that repre-
sent the appropriate stiffness of the beams and
columns. In the past decades, a considerable amount
of research works [11-29] have been done on the
dynamic and static analyses of planer and symmetric
structures in tall buildings in which static and dynamic
characteristics (e.g. stress, deformation, frequency,
mode shape, etc.) were calculated.

In this paper, natural frequencies of free vibration
of framed tube systems are obtained. Using
continuum modeling based on equivalent orthotropic
membranes, which presented by Kwan [10] and then
applying Hamilton's principle, governing equation of
motion and boundary conditions are obtained. Then,
calculating non-trivial solution of these equations, a
closed form solution is presented that can be used
for obtaining natural frequencies of framed tube
structures. Through numerical examples, the accu-
racy of the suggested method is compared with
computer analysis results, and the accuracy of the
suggested method is demonstrated.

2. Flexural-Shear Vibration of Framed Tube
Structures

2.1. Governing Equation of Free Vibration

The framed tube structure consists of a single tube
but must be symmetrical about two axes. Additional

assumptions or restrictions are given below:
1. All columns and girders must have equal proper-

ties on all sides and along the height of structure.
2. Story heights must be uniform.
3. All columns and girders must be of the same

material.
4. Bay widths must be uniform horizontally and

vertically.
5. All material behaves linear elastically.

The process of the proposed methodology is as
follows:
i) Framed tube system is replaced by a continuous
cantilever beam with hollow section [10];
ii) According to the replacement beam model, the

characteristic stiffness of load-resisting system
are applied in Hamilton's principle;

iii) The governing equation of motion and boundary
conditions are obtained;

iv) The vibration frequencies of the building is calcu-
lated by obtaining non-trivial solution of equations

and using separation of variables.
A framed tube structure, as shown in Figure (1),

is subjected to lateral loading of intensity ),( txw 

along the axis of symmetry. It has uniformly distrib-
uted mass ),(xm    shearing stiffness ),(xGA    and
flexural stiffness )(xEI    along the structural height
H.

Using Hamilton's principle, the dynamic char-
acteristics of the structure are governed by the
following differential equation of motion [30-31]:

Figure 1. Framed tube system in tall building structures.
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where ),( txy  is the deflection at the height
)0( Hxx   ≤≤  and time t. Since the tall building

structure can be considered as a vertical cantilever
beam, with zero deflection and rotation at the base,
and free (zero moment and shear) at the top, the
corresponding boundary conditions are as follows:
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The governing equation for free vibration is
obtained by letting 0),( =txw  in Eq. (1).

2.2. Eigenvalue Problem

Since the motion in free vibration at any point is
simple harmonic, and deflected shape is independent
of time, y can be written as follows:

)()(),( t    sinxytxy    ω=                                              (3)

where )(xy  and ω are mode shape and natural fre-
quency, respectively. Substituting Eq. (3) into Eq. (1)
and considering free vibration 0),( =txw  and car-
ried out necessary differential give:
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with boundary conditions:
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where 1)/(0 ≤=η≤ Hx  is the non-dimensional
height coordinate. The dynamic analysis of framed
tube structure has now been reduced to determining
the values of parameter ,2ω  for which homogenous
linear differential equation (Eq. (4)) has nontrivial

solutions )(ηy  satisfying homogenous boundary
conditions, i.e. the eigenvalue problems.

2.3. Analytical Solution of Uniform Framed Tube
Structures

When values of m, EI and GA are constant for
a uniform framed tube structure, Eq. (4) can be
written as follows:

0)()()( 222 =ηωγ−η′′ξ−η     yyyIV                          (6)

with boundary conditions:

1at0

0at0
2 =η=′ξ−′′′=′′

=η=′=

          yyy

          yy
                            (7)

where the structural characteristics parameters are
as follows:
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The values of ξ are γ relative to the structural
height, distributed mass, shear stiffness and flexural
stiffness over height. They are the relative shear and
flexural stiffness parameter, respectively. Letting:

κη=η ecy   )(                                                        (9)

and substituting into Eq. (6) leads to:

022224 =ωγ−κξ−κ                                        (10)

Its solution is:
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Therefore, the solution )(η y  of Eq. (10) and its
derivatives are as follows:
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Replacing all the boundary conditions in Eq. (13)
gives:
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and a nontrivial solution for Eq. (16) can be obtained
if the determinant )(ωf  of coefficients is zero, i.e.
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from which the frequency equation can be obtained
as follows:
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3. Numerical Examples

In this section, numerical examples are presented
to demonstrate the accuracy and robustness of the
approximate calculation. Two 40 and 60 storey rein-
forced concrete tall buildings are used to investigate
free vibration analysis of a framed tube system.
A simplified floor plan of the building is shown
in Figure (2). All the beams and columns have a
cross-section 0.8 × 0.8 m. The properties of the
approximate model are summarized in Tables (1)
and (2) (The method of approximate equivalent
modeling is described in [10]).

(17)

Figure 2. Framed tube's plan.

Plan Dimensions Height of Storey Space of Spans 

2a (m) 2b (m) H (m) sw (m) sf (m) 

30 35 3 2.5 2.5 

 

Table 1. Specifications of the 40 and 60 storey buildings for the
test cases.
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Using Eq. (20), the natural frequencies are cal-
culated and compared with those obtained from
SAP2000 (Advanced 14.0.0, Computers and Struc-
tures, Berkeley, California, USA.) free vibration
analysis as shown in Table (3). The proposed
approximate method estimates the natural frequen-
cies by 10%. The proposed method shows a good
understanding of structural behaviour, easy to use,
yet reasonably accurate and suitable for quick evalu-
ations during the preliminary design stages, which
requires less time.

The main sources of errors between the proposed
approximate method and the finite element method
are as follows:
v All closely spaced perimeter columns tied at each

floor level by deep spandrel beams are con-
sidered to form a tubular structure;

v Equivalencing the elastic properties of the framed
tube such as G.

4. Conclusions

In this paper, a numerical solution of eigenvalues
for free vibration analysis of framed tube system in
tall buildings by using Hamilton's principle is presented.
In comparison with finite element method, it shows
that the advantages of availability and reliability of
the proposed method can conveniently be taken for
obtaining accurate and reliable natural frequencies
of tall buildings with framed tube system. The
presented closed form solution can compute the
number of natural frequencies of the structure, but
other numerical methods except finite element

Table 2. Properties of actual and equivalent structures.

Actual Structure Equivalent Membranes Equivalent Membranes 

Material Web Flange 

E (GPa) G (GPa) Ew (GPa) Gw (GPa) tw (m) Ef (GPa) Gf (GPa) tf (m) 

20 8 20 1.726 0.256 20 1.726 0.256 

 

Number of  
Stories 

Number 
of Modes ξ γ ω (rad/sec) 

(Proposed Method) 
ω  (rad/sec) 
(SAP2000) 

% of Error  
in ω 

40 1 1.94 2.78 1.98 1.92 3 
40 2 1.94 2.78 6.58 6.33 4 
60 1 2.91 6.26 1.09 1.17 7 
60 2 2.91 6.26 4.39 3.98 10 

 

Table 3. Comparison of the results between SAP2000 and the proposed approximate method form analysis of 40 and 60 storey
buildings with framed tube system.

methods cannot, because the computations become
correspondingly more complicated for the latter if
high frequencies are needed. The presented method
can save much computational efforts and time than
the finite element method.
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