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ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

The near field region of an earthquake is considered to be the region within several
kilometers of the extension to the ground surface of the rupture plane. Recordings
from recent earthquakes have provided facts that ground motions in the near field
of a rupturing fault can contain a large energy, or "directivity," pulse. The objective
of this study is to investigate the sufficiency of Artificial Neural Networks (ANN) to
determine the three dimensional dynamic response of buildings under the near-fault
earthquakes. For this purpose, four ANN models are proposed to estimate the funda-
mental periods, base shear force, base bending moments and roof displacement of
buildings in two directions. The same input layer was submitted to different types
of ANN models and the results monitored. A training set of 168 and a validation set
of 21 buildings were produced from dynamic response of RC buildings under the
near-fault earthquakes by IDARC program. It was demonstrated that the neural
network-based approach is highly successful to determine the response of RC build-
ings subjected to near-fault earthquakes.
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1. Introduction

Considerable discussion has taken place on the
effect of ground motions on structural systems. As
distinguished from ground motions recorded at
moderate distances from the contributing fault,
near-fault motions contain intense, relatively long
duration pulses corresponding to the fault rupture
process. Impulsive type motions can cause signifi-
cant damage during an earthquake, especially to
structures with natural periods close to those of the
pulse [1].

After the 1971 San Fernando earthquake,
engineers and seismologists realized the potential
damage that may occur due to the effects of near-
fault ground motions on structures. The damage
observed during the 1994 Northridge, California, the
1995 Kobe, Japan, the 1999 Izmit, Turkey, the 2003
Bam, Iran, and the 2011 Japan earthquakes proved
the engineers’ theory that structures located within

the near-fault area sustain more severe damages
than structures located outside of this zone. These
earthquakes provided a wealth of new information
about the behavior of engineered structures because
the respective epicenters were in urban settings.

Bertero et al [2] were among the pioneers who
studied velocity pulses and their effects on structures.
After the 1994 Northridge and 1995 Kobe earth-
quakes, many engineers and seismologists began to
study the components of velocity pulses. If the
conditions of forward directivity are satisfied, the
record will be shorter in duration, higher in frequency
content, and the majority of the seismic energy will
be delivered in a large velocity pulse.

The objective of this research is to use the wealth
of recent ground motion data to improve the under-
standing of the response of typical reinforced
concrete buildings to pulse-type ground motions that
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result from forward-directivity effects and also,
discuss the adequacy of ANN as a secure and faster
method to be used in predicting the dynamic responses
of RC buildings.

2. Characteristics of Near-Fault Ground Motions

The near-fault region of an earthquake can be
defined as any area in the close neighborhood of the
fault rupture surface. In the near-fault, the ground
shaking is influenced by a number of factors.
Besides strong shaking, the characteristics of near-
fault ground motions are linked to the fault geometry
and the orientation of the traveling seismic waves
[3]. Vertical strike-slip faults can produce a directiv-
ity effect, and dip-slip faults can produce directivity
effects as well as hanging wall effects. Hanging
wall effects are felt on the hanging wall of a fault
(the earth above a vertically dipping fault), and are
due to the proximity of much of the fault to hanging
wall sites. Directivity effects can be classified as
forward, reverse, and neutral. Forward directivity is
when the direction of the rupture propagates toward
the site, while reverse directivity is when the rupture
progresses away from the site. Neutral directivity is
when the site is perpendicular to the ruptured fault
[4]. Within the research community, the term “direc-
tivity effects” has come to mean “forward directivity
effects” because forward directivity is more likely
to be responsible for the ground motions that cause
damage. Figure (1) portrays the three zones of
directivity, with the star representing the epicenter
and the black line indicating the fault.

When a fault rupture propagates toward a site at
a velocity close to that of the shear wave velocity,
an accumulation of most of the energy of the seismic
radiation of the fault can arrive at the site as a single

Figure 1. Zones of directivity [4].

long-period pulse. This is called a directivity pulse
[3]. The rupture is broken into sub-faults; beginning
at the epicenter, the rupture propagates along the
fault in the direction of the arrow toward Site A.
Because the velocity of the shear waves is close
to the rupture velocity, the energy of the forward
direction arrives within a short time period. Forward
directivity effects only occur when the rupture
propagates toward the site, and the direction of
slip on the fault is aligned with the site. Not all near-
fault locations will experience forward rupture
directivity effects in a given event. It can be seen by
the model that Site B, see Figure (2), will experience
a lengthening of the time between the appearances
of the waves; thus, the record at Site B will have a
long duration but not a velocity pulse.

Figure 2. Directivity pulse accumulates as rupture propagates
to right [4].

Forward directivity effects can be felt for both
strike-slip faults and dip-slip faults. On a strike-slip
fault, the directivity effects are mostly concentrated
away from the hypocenter because the energy
builds up as the shear waves travel away from the
point of dislocation toward the site. A dip-slip fault
produces forward directivity effects at the sites
located around the surface exposure of the fault [4].
Although the geometry of a fault is usually well
known, the direction of rupture is unpredictable.
Therefore, it is recommended that all buildings that
fall within the near-fault of an active fault be designed
for a possible velocity pulse.

The velocity and displacement time histories of
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typical near-fault ground motions having forward-
directivity effects (Rinaldi record of 1994 Northridge
earthquake) are compared to that of ordinary
far-fault motion (Taft record of 1952 Kern County
earthquake) in Figure (3). High-velocity pulses are
quite distinctive for Rinaldi; such pulses do not exist
in a typical far-fault ground motion like Taft.

3. Research Significance

Research over the past decade has shown that
pulse-type earthquake ground motions that result
from forward-directivity effects can result in signifi-
cant damage to structures. The objective of first
part of this research is to use the wealth of recent
ground motion data to improve the understanding

Figure 3. Typical velocity and displacement time histories of (a) far-fault, (b) near-fault (forward-directivity) ground motions.

of the response of typical reinforced concrete build-
ings to pulse-type ground motions that result from
forward-directivity effects.

Although three dimensional nonlinear dynamic
analyses of RC buildings provide valuable informa-
tion about their behavior, they are expensive and
time-consuming. Using ANN based models; it is
possible, at comparatively low cost and effort, to
predict the response of RC structures provided that
adequate input layers with correct input parameters
are chosen and trained. They also enable the de-
signer to rapidly evaluate the three-dimensional
response of buildings during the preliminary design
stage. In these models, the goal is to drastically
reduce the computational effort. In this study, ANN
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based models were employed as alternatives to
determine the three dimensional dynamic response
of buildings, in terms of fundamental periods in
two directions, maximum values of base shear
forces, dissipated energy and drift angles in two
directions.

4. Description of Buildings Used for Evaluation

Eight existing reinforced concrete dual system
(moment-resisting frame with shear walls) buildings
of 3, 5, 6, 9, 10, 14, 16 and 19 stories were selected
as representative case studies to evaluate their
seismic demands when subjected to near-fault
ground motions with forward directivity, and to
compare their respective responses to typical far-
fault ground motions. These buildings were designed
in compliance to the Iranian Code of Practice for
Seismic Resistant Design of Buildings [5]. The
rectangular plan of all buildings measures 30m by
25m. The floor plans and elevation views of the
buildings with beam and column sections are shown
in Figure (4). The columns are embedded into the
mat foundation, essentially restraining displacements
and rotations in all directions. The buildings are
assumed with a damping ratio of 5% in all modes,
and the floors as rigid diaphragms with infinite in-
plane stiffness. The sections of structural elements
are square and rectangular, and their dimensions are
logically changed at different stories. The slab
thickness is 10cm. For the sake of clarity, the column
and beam dimensions and reinforcement of the
10-story building have been mentioned in Tables (1)
and (2). Story heights of buildings are assumed to
be constant except for the 1st story. The modulus of
elasticity (Young’s modulus)  E = 30kN/mm2, Poisson's

Figure 4. Structural configuration of evaluated buildings (units:
meter).

Table 1. Dimensions and amounts of reinforcement of columns in 10-story building.

Corner Column Perimeter Column Internal Column 
Building Storey Dimensions 

(cm) 
Reinforcement 

(mm2) 
Dimensions  

(cm) 
Reinforcement 

 (mm2) 
Dimensions  

(cm) 
Reinforcement 

 (mm2) 
1 60×60 2100 60×60 1880 60×60 1930 
2 60×60 1200 60×60 1200 60×60 1200 
3 60×60 1200 60×60 1200 60×60 1200 
4 60×60 1200 60×60 1200 60×60 1200 
5 50×50 910 50×50 1335 50×50 950 
6 50×50 840 50×50 910 50×50 840 
7 50×50 840 50×50 900 50×50 840 
8 40×40 775 40×40 1070 40×40 840 
9 40×40 600 40×40 880 40×40 600 

10 Storey 

10 40×40 600 40×40 880 40×40 600 

ratio v = 0.20 and the mass density ρ = 24kN/m3 are
assumed in all models. The uniaxial strength for
nonlinear modeling of the concrete is considered
to be 35MPa. The rebar is modeled as steel with
yield strength of 400MPa and an ultimate strength
of 600MPa.

Permanent and imposed loads are assumed to
be: dead load of story level, 5.5kPa; dead load of
roof, 6kPa; dead load of partitions, 1kPa; dead load
of external walls, 2.5kPa; live load of story levels,
2kPa; and live load of roof, 1.5kPa.

5. Ground Motion Database

The ground motion database compiled for nonlin-
ear time-history analyses constitutes a representa-
tive number of far-fault and near-fault ground
motions from a variety of tectonic environments. A
total of 14 records were selected to cover a range
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Table 2. Dimensions and amounts of reinforcement of beams in 10 story-building model.

 

of frequency content, duration and amplitude.
Near-fault records were chosen so as to consider
the presence of forward-directivity effects. Hence
the assembled database can be investigated in two
sub-data sets. The first set contains seven ordinary
far-fault ground motions recorded within 90km of
the causative fault plane from earthquakes in the
magnitude (MW) range of 6.5 to 7.4. The second set
includes seven near-fault ground motions character-
ized with forward-directivity effect. These records
are from earthquakes having a magnitude (MW)

range of 6.5 to 7.4, and recorded at closest fault
distance of 0.0 to 10km. Information relevant to the
ground motion data sets, including station, component
of earthquake and peak ground acceleration (PGA),
peak ground velocity (PGV), and peak ground
displacement (PGD) of records are presented in
Tables (3) and (4).

Utilized in this study is a data processing tech-
nique proposed by Iwan et al [6] and refined in
Reference [7] to recover the long-period compo-
nents from near-fault accelerograms. This process

Table 4. Near-fault ground motion database.

Table 3. Far-fault ground motion database.

Beams of external frames Beams of internal frames 
Type 4 Type 3 Type 2 Type 1 

Reinforcement 
(mm2) 

Reinforcement 
(mm2) 

Reinforcement 
(mm2) 

Reinforcement  
(mm2) 

Storey Dimensions 
 (cm) 

h.×w. Bottom Top 

Dimensions 
 (cm) 

h.×w. Bottom Top 

Dimensions 
 (cm) 

h.×w. Bottom Top 

Dimensions 
 (cm) 

h.×w. Bottom Top 

1 60×50 1316 1664 60×50 1108 1583 60×50 1176 1670 60×50 1104 1593 

2 60×50 1685 2071 60×50 1488 1972 60×50 1532 2093 60×50 1484 1981 

3 60×50 1728 2141 60×50 1566 2054 60×50 1568 2176 60×50 1562 2059 

4 60×50 1764 2181 60×50 1564 2043 60×50 1600 2223 60×50 1557 2055 

5 50×45 1484 1931 50×45 1276 1823 50×45 1298 1965 50×45 1270 1835 

6 50×45 1393 1860 50×45 1221 1770 50×45 1203 1903 50×45 1214 1778 

7 50×45 1287 1737 50×45 1076 1607 50×45 1103 1779 50×45 1066 1625 

8 40×40 947 1424 40×40 711 1334 40×40 738 1449 40×40 702 1352 

9 40×40 665 1157 40×40 529 1100 40×40 570 1190 40×40 533 1110 

10 40×40 495 760 40×40 473 727 40×40 502 773 40×40 492 757 

No. Earthquake Year Station Comparison Mw Displacement 
(km) 

PGA 
(g) 

PGV 
(cm/s) 

PGD 
(cm) 

1 Kern County 1952 Taft 111 7.4 81 0.17 17.47 8.83 

2 Tabas 1978 Dayhook TR 7.4 107 0.4 26.17 9.1 

3 Imperial Valley 1979 Calexico 225 6.5 90.6 0.27 21.23 8.98 

4 Loma Prieta 1989 Presidio 000 6.9 83.1 0.099 12.91 4.32 

5 Loma Prieta 1989 Cliff House 90 6.9 84.4 0.107 19.78 5.06 

6 Manjil 1990 Abbar L 7.3 74 0.51 42.46 14.92 

7 Kocaeli 1999 Ambarli 90 7.4 78.9 0.18 33.22 25.84 

No. Earthquake Year Station Comparison Mw Displacement 
(km) 

PGA  
(g) 

PGV  
(cm/s) 

PGD  
(cm) 

1 Tabas 1978 Tabas TR 7.4 3 0.85 121.22 95.06 

2 Loma Prieta 1989 LGPC 00 7.0 1.3 0.56 94.71 41.13 

3 Cape Mendocino 1992 Petrolia 90 7.1 9.5 0.66 89.68 28.99 

4 Erzincan 1992 Erzincan NS 6.9 2 0.51 83.95 27.66 

5 Northridge 1994 Rinaldi 228 6.7 7.1 0.83 166.03 28.15 

6 Northridge 1994 Sylmar 360 6.7 6.4 0.84 129.3 31.92 

7 Bam 2003 Bam L1 6.5 7 1.09 131.26 89.24 
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has been extensively elaborated in Reference [8]
and [9].

6. Seismic Response Evaluation of Buildings

Totally, 280 nonlinear time history (NTH) analy-
ses were conducted on the eight buildings Inter-
story drift ratio (IDR), defined as the relative
displacement between two consecutive story levels,
displacements at different story levels, base shear
force, dissipated energy and shear forces at differ-
ent story levels are used as the primary measure of

Figure 5. Maximum inter-story drift for each building subjected to (a) far-fault earthquakes, (b) near-fault earthquakes with forward
directivity.

seismic demand. Additional demand measures, such
as component and story ductility were also investi-
gated. In general, there is a reasonable correlation
between the inter-story drift demands and compo-
nent/story-level ductility demands; hence the results
are not included here. The peak inter-story drift
profiles obtained from NTH analyses of the some
buildings subjected to the two sets of ground motions
(i.e., far-fault motions, near-fault motions  with for-
ward directivity) are presented in Figure (5).

For the 3-story building, far-fault motions produce
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Figure 5. (Continue)

a nearly uniform inter-story drift demand for most
records, with the exception of the Loma-Cliff record,
which triggers higher-mode effects resulting in
increased demands in the upper stories. In case of
near-fault records, they impose higher demands in
comparison to far-fault records though the maxi-
mum drift is generally concentrated at the middle
story levels. The largest demand is caused by the
Erzincan record, which produced 34.4mm inter-story
drift at the second story.

For the 6-story building, the maximum story
demand for far-fault records is observed to be either

at the second or third story levels and depends on
the frequency content of the motion. Though similar
observations hold for near-fault records, the demands
at the intermediate levels are much higher. Of the
entire data set, the Rinaldi record generated the
highest demand (31.8mm interstory drift) at the
third story.

For the 10-story building, the Bam record gener-
ated the highest demand (38.71mm inter-story drift)
at the third story level. Higher-mode effects are pre-
dominant in many of the near-fault records causing a
shift in demands from the lower to upper stories.
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For the 14-story building, the maximum story
demand for far-fault records is observed to be either
at the 7th or 8th story levels and depends on the
frequency content of the motion. Though similar
observations hold for near-fault records, the demands
at the upper levels are much higher. Of the entire
data set, the Bam record generated the highest
demand (20.56mm inter-story drift) at the 9th story.
Similar results were observed for 16- and 19-story
buildings. In both buildings, Bam record generated
the highest demand (21.1mm and 25.32mm inter-
story drift for 16- and 19-story buildings, respectively).

The variation in story demand for the far-fault
records is less significant. While higher-mode effects
are expected to contribute to the response of the
6- and 10-story buildings, the response of the 3-story
building demonstrates that even for low-rise build-
ings, higher-mode effects could be significant.

7. Artificial Neural Networks

Artificial neural networks are computing systems
that simulate the organic neural systems of human
brain. ANNs are structures deliberately designed to
imitate and use the organizational principles observed
in the brain [10]. They are based on a simplified
modeling of the brain's biological functions exhibiting
the ability to learn, think, remember, reason, and
solve problems. Artificial neural networks can be
most adequately characterized as computational
models with particular properties such as the ability
to adapt or to learn, to generalize or to cluster or
organize data, in which an operation is based on
parallel processing. It can be applied to many fields.
ANN has been applied to a wide range of civil
engineering problems [11].

In this study, the ANN based models were ap-
plied to predict the three-dimensional response of
buildings in terms of fundamental periods, maximum
values of roof displacements and base shear forces
and dissipated energy in the time domain. Hence, the
general description of ANN in the following sections
will be concentrated on its capacity to establish a
functional relationship between input and output
data. Firstly, the general structure of ANN will be
introduced. The methods used for training, cross
validating and testing ANN models are then presen-
ted. Thirdly, a mathematical expression of ANN
models will be described, and its inherent advantages
over the conventional regression analysis will be
discussed.

8. Structure of Neural Network
A typical structure of an ANN model can be

established by Figure (6), in which the left column is
the input layer, the right column is the output layer,
and in between the input and output layers, is a
hidden layer. Normally, there could be more than
one hidden layer.

Figure 6. General structure of an artificial neural network.

In each layer, there are numerous Processing
Elements (PE). The number of PEs in the input layer
is equal to the number of input parameters, while the
number in the output layer is equal to the number of
output parameters. The significant task in an ANN
model is to verify the number of PEs in the hidden
layer, which affects the correctness of the model.
Each processing element has several inputs and
one output. The relation between input, xj, and
output, yp, of a single PE can be expressed as [12]:
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where j
pω  is weights, pa  is a constant (usually

referred to as threshold), f (·) is called the activation
function, which could be a sigmoid function or hyper-
bolic tangent function, etc. The PEs in the hidden
layer will obtain data from only the input layer.
Similarly, the PEs in the output layer will only obtain
data from the hidden layer.

Once the topology of an ANN model is decided,
the next task is to determine the values of all the
weights, which will be resulted in the following
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section. This process consists of three steps, namely
training, cross validation and test. The details of this
can be seen in the reference [12].

9. Background

Backpropagation is a common method of teach-
ing artificial neural networks how to perform a given
task. The weights of each unit must be adjusted in
such a way that the error between the desired output
and the actual output is reduced. This process
requires that the neural network compute the error
derivative of the weights (EW). In other words, it
must calculate how the error changes as each
weight is increased or decreased slightly.

The back propagation algorithm is the most
widely used method for determining the EW. The
algorithm computes each EW by first computing the
EA, the rate at which the error changes as the
activity level of a unit is changed. For output units,
the EA is the difference between the actual and the
desired output. To compute the EA for a hidden unit
in the layer just before the output layer, firstly, all
the weights between that hidden unit and the output
units to which it is connected are identified. Then,
those weights are multiplied by the EAs of those
output units and added the products. This sum equals
the EA for the chosen hidden unit. After calculating
all the EAs in the hidden layer just before the output
layer, the EAs for other layers are computed in like
fashion, moving from layer to layer in a direction
opposite to the way activities propagate through the
network. This is what gives back propagation its
name. Once the EA has been computed for a unit, it
is straight forward to compute the EW for each
incoming connection of the unit. The EW is the
product of the EA and the activity through the
incoming connection.

Assume that the transpose of the vector of input
variables is XT = (x1, x2, . . . , xn), and the transpose
of the vector of output variables is YT = (y1, y2,
. . . , yL). For an ANN model with one hidden layer
with m number of PEs in the hidden layer, the math-
ematical expression of the jth output variable is [12]:
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where i
jw  is the weight of the ith PE in the hidden

layer to the jth PE in the output layer, jc  is a
constant, )(Xjψ  is the output of the ith PE in

the hidden layer, which is expressed as:
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where k
iw  is the weight of the kth input variable in

the input layer to the ith PE in the hidden layer, and
ib  is a constant.

There are many ways to choose base functions,
for example, trigonometric polynomials (Fourier
series) and polynomials. Selecting suitable base
functions is very important in function estimation. If
the choice is not appropriate, there will be a non-
vanishing error, no matter how big the number of
base functions is. In the context of developing
empirical formulae in structural design, the polyno-
mial is a popular form, see Figure (7).

Figure 7. Processing neuron in ANN.

When a detailed description is lacking, a sigmoid
function is often used. A sigmoid curve is produced
by a mathematical function having an “S” shape and
defined by the formula:

te
tP −+

=
1

1)(                                                     (4)

where P is a variable with respect to time t and e is
Euler's number.

Conventionally, the learning process is used to
determine appropriate interconnection weights, and
the network is trained to make proper associations
between the inputs and their corresponding outputs.
Errors that arise during the learning process can be
expressed in terms of mean square error (MSE) and
are calculated using Eq. (5).
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In addition, the sum of the squared error (SSE),
the absolute fraction of variance (R2) and mean
absolute percentage error (MAPE) are calculated
using Eqs. (6) to (8), respectively.

∑
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where tj is the target value of j 
th pattern, oj is the

output value of j 
th pattern, and p is the number of

patterns.

10. ANN Models for Prediction of Nonlinear
Dynamic Analysis

The ANN based models were used for predicting
the three dimensional response of buildings. Building
responses are in terms of fundamental periods in
two directions, maximum values of base shear forces,
dissipated energy and drift angles in two directions
in the time domain. Four ANN models, which used
the same input layer, were developed as shown in
Figure (8).

Figure 8. ANN models with the same inputs.

Main periods of building in two directions were
simulated with the ANN1 model, see Figure (9). The
maximum of base shear forces, dissipated energy
and drift angles time histories in two directions
were simulated with the ANN2, ANN3 and ANN4
models, respectively, see Figure (10). The ANN2
model defines the drift angles in output layer. ANN3
model defines the base shear force in output layer,
and ANN4 model defines the dissipated energy in

Figure 10. Architecture of proposed ANN2, ANN3, and ANN4
models.

Figure 9. Architecture of proposed ANN1 model.

output layer. The same input layer was used for
three different outcomes in the ANN2, ANN3 and
ANN4 models.
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Nonlinear dynamic analyses of 280 reinforced
concrete buildings subjected to seismic motions
were carried out by the IDARC program [13]. The
response of buildings is presented in terms of
fundamental periods, maximum drift angles, base
shear forces time histories and dissipated energy.
For  database, nonlinear dynamic analyses of these
buildings were selected. These databases were di-
vided into two sections: (1) the training set and (2)
testing set. 175 of these data were utilized as the
training set, 105 data were utilized as the testing set.

In time history dynamic analysis of buildings, a
total of 14 records including seven far-fault earth-
quakes and seven near-fault earthquakes were
selected to cover a range of frequency content,
duration, and amplitude, see Tables (3) and (4).
The peak acceleration of seismic records was
normalized between 0.20 and 0.60g to simulate the
x-direction and y-direction of buildings, respectively.

The inputs used for ANN models consisted of 14
data sets in terms of common properties of buildings
and earthquakes, see Table (5). Although all inputs
were utilized in the ANN2, ANN3 and ANN4 models,
only peak acceleration and pulse period were not
used in the input layer of the ANN1 model.

An important task in an ANN model is to deter-
mine the number of PEs in the hidden layer, which in
turn affects the accuracy of the model. There is no
general rule for selection of the number of neurons in
a hidden layer and the number of the hidden layers.
Hence, they are determined by trial and error in this
study [14]. Numbers of different NN models with
various hidden neurons are trained and tested for
3500 epochs. Each neural network model is started

Table 5. Inputs for ANN models.

with different random weights. Suitable neural
network models are selected according to the
performance of training and testing sets. Therefore,
the ANN1 model is selected with 12 neurons in the
input layer, 17 neurons in the hidden layer and two
neurons in the output layer for determining the
fundamental periods, see Figure (9). The ANN2,
ANN3 and ANN4 models are chosen with 14 neurons
in input layer, 17 neurons in hidden layer and two
neurons in output layer, for determining the drift
angles, the base shear force, the dissipated energy,
see Figure (10), using ANN2, ANN3 and ANN4
models respectively. The quantity of inputs and
outputs are normalized in the 0-1 range using
normalization values given in Table (6).

Sensitivity analysis determines the influence of
input variable contributions in neural networks
sensitivity. Conventional sensitivity analysis involves
varying each input variable across its entire range
while holding all other input variables constant; in
order that the individual contributions of each
variable are assessed. The sensitivity analysis
results show that among many parameters that
potentially may affect the behavior, those shown in
Table (5) are the most important ones affecting the
network outputs.

A MATLAB-based computer program was utilized
to train and test the neural network models based on

Table 6. Range of parameters in the database and normali-
zation values.

Parameter Minimum Maximum Normalization 
Value 

Ap (g) 0.2 0.6 1 

Sw 0.0 1.0 1 

Ix (m4) 0.01 11.0 12 

Iy (m4) 0.01 11.0 12 

Hn (m) 3.0 4.5 10 

Hb (m) 3.0 4.5 10 

Lx (m) 4.0 7.0 10 

Ly (m) 4.0 7.0 10 

Bx (m) 15.0 50.0 100 

By (m) 15.0 50.0 100 

N 3.0 20.0 100 

Nbx 1.0 10.0 10 

Nbx 1.0 10.0 10 

Tp 0.1 5.0 5 

T (s) 0.1 3.0 5 

Top Displacement (m) 0.001 2.0 2.5 

Base Shear (104kN) 0.2 6.0 10 

Base Moment (105kN) 0.5 10.0 10 

Notations Inputs 
Ap Peak Acceleration 

Sw Shear Wall 

Ix Total Moment of Inertia (in x Direction) 

Iy Total Moment of Inertia (in y Direction) 

Hn Story Height 

Hb Story Height of Base Floor 

Lx Max Width of Bay in x Direction 

Ly Max Width of Bay in y Direction 

Bx Widths of Building in Plan in x Direction 

By Widths of Building in Plan in y Direction 

N Number of Stories 

Nbx Number of Bay in x Direction 

Nbx Number of Bay in y Direction 

Tp Pulse Period 
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the database generated from the nonlinear dynamic
analysis results. In the neural network models, the
type of back-propagation is an iterative method. The
activation function is Sigmoidal Function, and the
number of learning cycles is about 30000.

11. Results and Discussion

In order to test the capability of the proposed ANN
model, the results were compared with the  nonlinear
dynamic analysis outcomes. The performance of the
ANN models showed that the correlations  between
targets and outputs are consistent as shown in
Figures (11) and (12).

The buildings with 3, 6, 10, 16 and 19 stories
were used for network training. As shown in
Figures (11a) and (12a), the results of training sets
indicate that the ANN was successful in learning
the correlation between the different input and out-
puts parameter. The results of testing sets, as shown
in Figures (11b) and (12b), that the neural network

Figure 11. Performance of proposed ANN1 model: (a) training
set and (b) testing set.

was able capable of simplifying between the input
and the output variables.

In validation set for ANN1 models, all values
have good relationship with nonlinear dynamic
analysis results, see Figure (11b). Although, some
values in the validation set showed a scatter, most of
the results are in good relationship with nonlinear
dynamic analysis, see Figure (12b).

12. Testing Model

For testing of data, a different plan and different
number of stories were selected. The typical floor
plan of the models with 5, 9, and 14 stories is shown
in Figure (13). The inter-storey height is 4.00m for
the ground and 3.50 for other stories. The width of
the building along x-axes is Bx = 16.0m and along
y-axes By = 13.0m. The main periods of the building
in two directions were calculated and compared
with the ANN1 model and the nonlinear dynamic
analysis. The results are given in Tables (7) and (8)

Figure 12. Performance of proposed ANN2, 3, 4 model: (a) train-
ing set and (b) testing set.
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Figure 13. The typical floor plan of testing model (units: meter).

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.2985 0.3078 1.0311 

5 0.4963 0.5091 1.0258 

6 0.5893 0.5965 1.0122 

9 1.056 1.088 1.030 

10 1.105 1.069 0.9674 

14 1.5320 1.5210 0.9928 

16 1.8652 1.9028 1.0201 

19 2.015 2.099 1.0417 

Table 7. Results of fundamental periods of ANN1 model for
the testing set in x direction (sec).

Table 8. Results of fundamental periods of ANN1 model for
the testing set in y direction (sec).

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.2953 0.2998 1.0152 

5 0.4886 0.4981 1.0194 

6 0.5733 0.5563 0.9703 

9 0.9856 0.9988 1.0134 

10 1.0042 1.008 1.0038 

14 1.4986 1.4769 0.9855 

16 1.8163 1.8965 1.0441 

19 1.9885 2.008 1.0098 

 

Figure 14. Fundamental periods in two directions.

and Figure (14).
The drift angles, see Figure (15), base shear

forces, see Figure (16), and dissipated energy, see
Figure (17), along the two directions of buildings
were calculated and compared with ANN2, ANN3,
ANN4 models and the nonlinear dynamic analysis.

Likewise, the results of analysis with IDARC pro-
gram and ANN have been given in Tables (9) to (14).

The sum of the squared error (SSE), the root-
mean-squared (RMS) and the absolute fraction of
variance (R2) for the testing sets of ANN models
were tabularized in Table (15). All of the values
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Figure 15. Drift angles in two directions.

Figure 16. Base shear forces in two directions.

Figure 17. Dissipated energy in two directions.

established that the proposed ANN model is
suitable for predicting the dynamic response of
buildings, in terms of the fundamental periods, drift

angle, base shear forces and dissipated energy,
when evaluated with the results of nonlinear dynamic
analysis.
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Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.0563 0.0623 1.1066 

5 0.0812 0.0846 1.0418 

6 0.0904 0.0984 1.0884 

9 0.1045 0.1088 1.0411 

10 0.1186 0.1099 .9266 

14 0.1240 0.1286 1.0371 

16 0.1464 0.1509 1.0307 

19 0.1900 0.1973 1.0384 

 

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.0584 0.0603 1.0325 

5 0.0862 0.0897 1.0406 

6 0.0925 0.0964 1.0421 

9 0.1036 0.1093 1.0550 

10 0.1077 0.1053 0.9777 

14 0.1127 0.1199 1.0638 

16 0.1489 0.1469 0.9865 

19 0.1941 0.1996 1.0283 

 

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.2634 0.2675 1.0155 

5 0.3485 0.3395 0.9741 

6 0.4187 0.3989 0.9527 

9 0.6052 0.6096 1.0072 

10 0.6461 0.5896 0.9125 

14 0.8698 0.9654 1.1099 

16 1.0003 1.0086 1.0083 

19 1.3229 1.2596 0.9521 

 

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.2589 0.2603 1.0054 

5 0.3536 0.3458 0.9779 

6 0.4223 0.3957 0.9370 

9 0.6132 0.6146 1.0023 

10 0.6498 0.5824 0.8963 

14 0.8526 0.9601 1.1261 

16 1.0074 0.9701 0.9630 

19 1.2504 1.2701 1.0157 

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.5432 0.7026 1.2934 

5 0.6856 0.6889 1.0048 

6 0.7695 0.6285 0.8167 

9 1.4852 1.5743 1.060 

10 1.5690 1.8621 1.1868 

14 2.5673 2.8963 1.1281 

16 4.0156 3.8968 0.9704 

19 5.1168 5.0258 0.9822 

Number of Stories 
(x Direction) IDARC ANN IDARC

ANN  

3 0.4895 0.5246 1.0717 

5 0.6776 0.6969 1.0285 

6 0.7075 0.5867 0.8292 

9 1.4752 1.5836 1.0735 

10 1.0060 1.2867 1.2790 

14 2.5129 2.3085 0.9186 

16 4.1256 3.9961 0.9686 

19 5.1087 5.2351 1.0247 

Statistical  
Values Period Roof  

Displacement 
Base  

Shear Force 
Base  

Bending Moment 

SSE 0.002658 0.008567 0.1576 0.2943 

RMS 0.012637 0.025473 0.10258 0.17586 

R2 0.999689 0.99057 0.97895 0.942561 

Table 9. Results of drift angles of ANN2 model for the testing
set in x direction.

Table 10. Results of drift angles of ANN2 model for the tes-
ting set in y direction.

Table 11. Results of base shear force of ANN3 model for the
testing set in x direction (104kN).

Table 12. Results of base shear force of ANN3 model for the
testing set in y direction (104kN).

Table 13. Results of dissipated energy of ANN4 model for the
testing set in x direction (105kN.m2/s2).

Table 14. Results of dissipated energy of ANN4 model for the
testing set in y direction (105kN.m2/s2).

Table 15. The statistical values for testing building.

The results for R2 are 0.999689, 0.99057, 0.97895
and 0.942561 for the periods, drift angles, base
shear force and dissipated energy respectively, and
they show a good connection. The advantages of

ANN over nonlinear dynamic analysis are now quite
obvious as the former requires no simplifying
assumptions, preliminary modeling or calibrations
to name a few.



JSEE / Vol. 13, No. 3 & 4, 2011194

A. Mortezaei and H.R. Ronagh

13. Conclusions
Artificial neural networks have been widely used

for simulating the behavior of complex physical
phenomena applicable to many branches of science
and engineering. However, there have been relatively
few applications in the field of structural engineer-
ing. In this study, an ANN based model was applied
and its predictions compared with the results obtained
from nonlinear dynamic analyses. The responses of
280 different buildings were chosen and utilized as a
database. 175 of these data were applied as the train-
ing set, and 105 data were used as the validation set.
The ANN model was checked with a testing set
that was not used in the training process. It was
shown that the ANN-based model can successfully
calculate the response of buildings in terms of the
fundamental periods, maximum values of base shear
forces, dissipated energy and drift angle time histo-
ries. Results of ANN model were actually capable
and showed good generalization. This study has
shown the feasibility of the potential use of ANN
models in determining the response of buildings
subjected to earthquakes. The promising results
observed in the dynamic analysis of RC buildings
indicate that the ANN models enable the designers to
rapidly evaluate the response buildings during the
preliminary design stage.
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