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Bending ray tracing is a technique for finding the shortest travel path from a fixed
source to a fixed receiver. Ray tracing is a time-consuming computing technique in
applications such as tomography, which involves a large number of source-receiver
pairs. In this regard, parallel programming makes it possible to reduce the running
time of a serial program significantly by breaking it into a discrete series and solve
it by different processing units simultaneously. Along with the rapid development
of parallel computing technologies in both hardware architecture and system
software, parallel computing is growing rapidly in a broad range of scientific
computing applications. In this paper, the parallelization of pseudo-bending ray
tracing algorithm is presented using both task and data parallelization strategies.
In the task parallelization, the bending calculation of each path section is dis-
tributed to different processors, while in the data parallelization, due to the
independent calculation for each pair of source-receiver, the data parts are dis-
tributed to different processors. The performance results of the parallelizations of
the pseudo-bending algorithm for ray tracing in a 3D velocity model are shown
using OpenMP, which is an application programming interface for shared memory
multiprocessing programming. The advantage of OpenMP programming model is
its simplicity to parallelize an existing serial code. This is especially useful now that
multi-core CPUs are common. The results show the effectiveness and efficiency of
the approach. A significant speedup in the ray tracing implementation is achieved.
This reduction in computation time allows more rays to be traced, which directly
affects the accuracy of tomography results. Sufficient ray coverage is needed to
obtain tomography images with perfect resolution.
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ABSTRACT

1. Introduction

The present study was conducted to investigate
the parallelization of the ray tracing algorithm in
order to reduce its computation time. Ray tracing
determinesþ a seismic ray path between a source
and receiver and its travel time in three-dimensional
non-homogeneous isotropic media.

Ray tracing is based on Eikonal equation (Eq. 1),
which describes the kinematic propagation of

high-frequency waves:

( )  
d drs s  
dl dl

= ∇                                               (1)

where s is slowness, l is ray path length, and r is
position vector on the path. In a homogeneous
medium, the rays from a fixed source emit with
uniform angular distribution and simply through

Research Note

DOI:10.48303/jsee.2019.243309

Keywords:
Ray tracing; Bending;
Tomography; Parallel
programming;
Multiprocessor; OpenMP



JSEE / Vol. 21, No. 4, 201950

Madineh Banihashem Kalibar, Hossein Sadeghi, and Sayyed Keivan Hosseini

straight-line paths. However, non-homogeneity
medium causes to change the emitting angle and
thereby imposing different curvature of the ray paths
(Figure 1). The phenomenon of multipathing is
another critical problem. There may be more than
one path connecting a source to a receiver and
therefore defining a valid path will be the problem.
In addition to its accuracy and validity, the speed of
calculation is another important feature of a ray
tracing method, which is of great importance due to
the growing need for a fast calculating technique,
especially in complex three-dimensional media. For
decades, researchers have been trying to introduce
reasonably fast approximate solutions to the
traditional exact methods. The solvers are divided
computationally into two main types; i.e., grid-based
and ray-based [1]. Using the grid-based method, it is
possible to calculate and store travel times for all
points in the model. Then, following the travel time
gradient from source to receiver, the Eikonal solution
can be obtained by different approaches such as
finite difference (e.g., Vidale [2], Rawlinson and
Sambridge [3]). Although the grid-based methods,
even in extremely non-homogenous media show
high stability, they are time-consuming. Therefore,
researchers have paid particular attention to the ray-
based methods, which are commonly known as the
shooting and bending methods (e.g., Langan et al.
[4]; Sun [5]; Mao and Stuart [6]; Cores et al. [7];
Xu et al. [8]).

In the shooting, a ray with a desired take-off
angle is shot toward the receiver. Afterward, using
the ray equation (Equation 1) as an initial value
problem and following the Snell's law at the succes-
sive interfaces, a complete ray path is traced. The

shooting method is computationally simple but
rather time-consuming. Mohammadzaheri et al. [9]
introduced a distributed map-reduced algorithm on
a cluster in order to reduce the computation time of
the shooting method.

Mathematically, the bending method is a two-
point boundary value problem in which an initial
arbitrary path between a source and a receiver is
estimated, followed by iteratively bending the path in
a 3D velocity model to satisfy Fermat's principle of
stationary time. The original bending algorithms
(Jacob [10], Wesson [11], Julian and Gubbins [12],
Pereyra et al. [13]) solve the ray equation exactly
and therefore need complicated computations.
Um and Thurber [14] proposed a pseudo-bending
method as an alternative algorithm for the bending
method, which determines the ray path by per-
turbing a series of points to speed up the calculation.
Later, Zhao et al. [15] and Koketsu and Sekine [16]
extended the pseudo-bending method to account
for velocity discontinuities and spherical coordinate,
respectively. To overcome the convergence problem,
Sadeghi et al. [17] developed a method that employs
genetic algorithms to search for the globally minimum
time path between two fixed points. The pseudo-
bending method was improved by Koulakov [18]
for applicability to any parameterization of the
velocity distribution.

The significant progress toward simplicity and
computation time reduction has made the bending
method as a widely used ray tracing method in
seismic tomography. However, intensive calculations
are needed to gain high-quality and high-resolution
images; therefore, increasing the computational
speed is always of high importance. In recent years,

Figure 1. An angular uniform emission rays by a source point (gray dot) in a smoothly varying heterogeneous medium [1].
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parallel computing on a cluster of computers or
computers with multicore processors has been the
subject of intense interest for researchers to
overcome the excessive computational time re-
quirements. This paper aims to parallelize the
pseudo-bending ray tracing algorithm. Traditionally,
a program is written for sequential computation on
a single processor. The processor performs the
program's instructions one after another. Therefore,
an approximate run time of the serial program can be
calculated by multiplying the number of instructions
by the average time per instruction. To decrease the
run time of this program without changing the code,
it is needed to enhance the speed of the processor.
However, it increases the power required to operate
the processor and increase the amount of heat
generated. In this regard, it is much more difficult
for the heat sink to be removed at a reasonable
speed [19]. As a fundamental drawback of the
processor speed, it is not capable of increasing the
speed at a constant rate. As a result, there is no
significant speed improvement for a single processor
computer. Instead, today's computers have multiple
processors and can run instructions in parallel and
simultaneously. These computers lead to a significant
increase in computation speed.

Multiple N processors, in an ideal world, have
an N-fold speed-increasing effect. However, the
actual speedup will be less than N folds. Amdahl's
law [20] is a formula that provides the maximum
speedup to a parallel program based on the fraction
of the code that can be parallelized. Therefore,
proper parallelization of code requires expertise in
parallel programming. Accordingly, researchers
and industry vigorously seek to develop tools that
can facilitate parallel programming or the conver-
sion of serial programs to parallel. Some tools and
techniques have been developed to help parallel
programming. Among them, the oldest and still
applicable Application Program Interface (API) for
shared memory parallel computing is Open Multi-
Processing (OpenMP), which helps to create more
easily multi-threaded codes of existing serial pro-
grams [21]. In the present study, we use OpenMP
to parallelize a sequential bending algorithm for ray
tracing in a 3D velocity model and to show the
speedup of the parallel executions on a multi-core
computer.

2. OpenMP Parallel Mode

The OpenMP is a shared memory multi-thread
compiler that is used as a portable programming
interface for applications written in C, C+ +, and
Fortran languages. The first version was released
in October 1997 and is the most commonly used   par-
allel programming language today. The industry
works for more cores on a piece of a computer;
however, the final performance comes from the
software. It means that it should go in software and
make it run in parallel. There is no magical compiler
that takes a serial code and automatically creates a
parallel code, and users have to parallelize their
existing serial programs by themselves. The main
work occurred with finding the concurrency and
understanding the parallel algorithm strategy. The
users have to look into the code and think about
the problem and decide where the concurrency is
and how it could be executed in parallel. The
purpose of OpenMP is to easily convert an existing
serial code to a multithreaded code by adding
some commands. It is relatively easy to learn for
users who are familiar with general programming
concepts even without a background in parallel
programming. Some of the advantages of OpenMP
include: (1) simple parallelization; which can be as
simple as taking a serial program and placing
OpenMP directives, (2) incremental parallelization;
which provides the capability to implement
parallelization for both loops at a time or even small
segments of a code at a time, and (3) portability;
which is standard among a variety of shared
memory platforms and is supported by a large
number of compilers.

The execution model of OpenMP is a Fork/Join
(Split/Merge) model, which is a parallelizing form
that starts with a single thread (the master thread).
The program's code is divided into serial and parallel
sections. The master thread, as the only thread in
the beginning, runs the serial sections of the code
and forks a specified number of slave threads and
the system splits the parallel sections of the code
among them. The parallel sections are executed by
every thread. When all threads completed execution
and finished their share of computational work,
they merge and join the master thread. Again, the
program is assigned to the master thread for im-
plementing the Fork/Join instructions (Figure 2).
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Figure 2. Fork-Join model for OpenMP parallel mode.

3. Reference Algorithm

Although the bending is computationally more
complex than the other methods of ray tracing, it is
faster in computation time. The computation time
is the main reason why this method has been used
extensively. In addition to the exact bending
methods, the pseudo-bending methods have also
been developed to obtain simple and efficient
algorithms that reduce the computation time while
maintaining the accuracy. The pseudo-bending
algorithms use the Fermat's principle of travel time
minimization without a direct solution of the ray
equation. In a 3D velocity model, the ray path
between a specified pair of source and receiver is
constructed by starting a three-point guess to the
ray path and perturbing it geometrically using the
following equations [14]:
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for k + 1 and k - 1 points, v∇ is velocity gradient, and
( )midv∇  is the velocity gradient at the mid-point

;midX  n, and R are the direction and amount of
perturbation for the mid-point, respectively.
Koketsu and Skenie [16] showed that the pseudo-
bending method is numerically more stable than the
exact bending methods that use the finite difference
method (FDM) to solve directly the ray equation.

In this work, we parallelize a modified version
of the pseudo-bending algorithm presented by
Koulakov [18]. The important feature of the approach
of Koulakov is that it only requires defining uniquely

one positive velocity values at any point in the model.
So, it can use any velocity model parameterization
such as nodes, cells, and polygons, or analytical
laws, or any other related ways. Figure (3) shows
the basic principle of the algorithm. The starting ray
path is a straight line between two fixed endpoints
(i.e., A and B), and point 1 in the middle of the path
is used for the bending to reach a minimum travel
time. Bending is done in two directions perpendicular
to the ray path (i.e., in and across the plane of the
ray) and the amount of shift is linearly dependent on
the length of the path segments. In the next step, the
three points (i.e., A, B, and C) are fixed and the
bending of the ray path is done in two segments at
middle points 1 and 2, followed by searching the
point 3 by fixing the points 1 and 2. The act of
dividing between two endpoints continues until the
path segments reach the predefined minimum
length.

Portions of this algorithm run independently
while the others have a dependency chain; however,
they eventually are merged to estimate a new ray
path. The existence of loops with independent
iterations allows us to parallelize the algorithm.
There are two kinds of parallelizing strategies; task
parallelism (partition independent tasks) and data
parallelism (partition independent data). The two
kinds of parallelization were studied for the bending
ray tracing. In the task parallelism approach, the
perturbation computations of ray path sections are
partitioned between different processors of a
parallel machine (Figure 4). The parallel algorithm
has the following structure:
- Define an initial path for a given position of a source

and receiver in the 3D model.

Figure 3. The principle of the bending reference algorithm
for the ray tracing (adapted from Figure (2b) of Um and
Thurber [14]).
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Figure 4. Flowchart of the task parallelization scheme; the NR
is the total number of paths between source-receiver pairs.
The NT is the number of tasks, and the NP is the number of
processors. The optimal condition is NT ≤  NP..

- Bend the initial path by a single processor.
- Divide the bent path into two sections, assigning

the bending of each section to two distinct pro-
cessors.

- Double the path sections, assigning the bending
task of each section to a specific processor.

- Continue the path dividing and processor assign-
ing respectively.

- If the number of sections exceeds the number of
processors, assigning the bending of an extra
section to the processor will finish its task early.

- Repeat (1) to (6) until ray paths are traced for all
source and receiver pairs.
This algorithm can be easily implemented using

OpenMP. Parallelization of the serial code can be
simply specified by adding a directive '# pragma

omp ...' to the place of the code where we want to
execute in Parallel. The program starts as a single
thread (the master thread). It working on an initial
path and it comes to the point of dividing path,
where an additional thread can help out. The master
thread forks in two threads at that point, step (3) in
the algorithm. Now is gone from serial part of the
program to parallel region as the two threads work
together in parallel as a team. When they finished
their work, join back together into one thread to
merge the results. The master thread continues for
step (4), doubling the ray path sections, forks off
another team with the double number of threads,
and divides the bending of each path section among
them. All the threads run concurrently on each
processor and independent of each other, but before
joining, if the number of sections exceeds the
number of processors, the bending of extra sections
wait for processors that finish their jobs earlier to
complete all the ray path sections.

Since the bending algorithm rays are traced
independently between fixed endpoints, it can also
be easily distributed over multiple processors by
data parallelization, in which each processor only
reads a part of the data. Figure (5) shows a sche-
matic example. It should be noted that although a
2D model is presented in this figure, the algorithm
is designed for the 3D model. The data parallelism
strategy itself can be done either by partitioning
the all paths into P parts equal to the number of
processors and just executing the ray tracing on
each of the processors or by partitioning based on
the all possible paths from a source or to a station
(Figure 6). In this case, if there are M sources and
N stations, the parallel algorithm has the following
structure:
- Partition data into M or N parts, assigning one per

processor.
- Execute the ray tracing on each of the proces-

sors.
- If the number of parts exceeds the number of

processors, assign the remaining parts to the
processor that will carry out their job earlier.

- Execute the ray tracing until all ray paths are
traced.
This algorithm can also be easily implemented

using OpenMP. Unlike the previous algorithm, here
the master thread forks into several worker threads
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Figure 5. To parallelize the bending ray tracing algorithm, the paths connecting all possible source-receiver pairs, or the rays
connecting an individual source (black circles) to all possible stations (gray triangles), and vice versa can be distributed among
the processors.

equal to the number of CPU cores. Each worker
keeps doing its job until all the ray paths are traced.

4. Results

The dataset used in this work is the real data
presented in Koulakov [18] for a study in Costa
Rica, consisting of 1079 sources and 129 stations. A
total number of 24,285 P rays were traced through
a 3D synthetic model defined by a checkerboard
pattern. The checkerboard consists of vertical

Figure 6. Flowchart of the data parallelization scheme; the NP
denotes the number of processors.

columns of altering ±10% of velocity perturbations
with respect to the true 1D reference model (see
Figure 2, in Koulakov [18]). The checkerboard size
pattern is 20×20 km. The model is parameterized by
using a 3D grid of nodes with 5 km spacing. P-wave
velocity values are defined at grid-nodes and the
velocity distribution is interpolated linearly between
the nodes. We implemented the parallel ray tracing
algorithm by using OpenMP to execute on a multi-
core pro-cessor. We tested the proposed parallel
algorithms on a hexacore machine (Intel Core
i7-2630QM @ 2.0 GHz, 4GB RAM) and measured
their performance. A noteworthy issue in the
implementation of OpenMP is that a parallel region
must be a structured code block, which means that
it is not allowed to jump in or out of the parallel
region. Therefore, it is needed to replace the GOTO
commands in the code with Do loops. The standard
OpenMP function, omp_ get_ wtime(), is used to
measure the time that has passed during the execu-
tion. In order to compute a precise measure of the
speedup, the algorithm was executed 100 times and
the mean value of the measured times was taken
as the result. The results of the parallel algorithms
are discussed. The execution time of the parallel
code with 2, 3, 4, 5, and 6 cores was reduced in
comparison to the serial code (1-core). Moreover,
since bending ray tracing for each path between
a source-receiver pair is inherently independent
of the other paths, and also the pseudo-bending
technique perturbs the path segments independently
from each other, the parallelization does not affect
the results accuracy. Briefly, the calculated ray
paths and travel times by the parallel codes are the
same as the serial code. Figure (7) presents the
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Figure 7. The execution time of sequential and parallel algorithm for different number of sources (top) and the all 1079 sources
(bottom) by distributing bending sections on a different number of cores (a), distributing sources on a different number of cores (b),
and partitioning all paths connecting the sources to the stations into a number of parts equal to the number of cores (c).

execution time versus the number of sources from
3 to 1079, for a different number of cores. The
figure also shows the execution time of the all 1079
sources, separately. In the task parallelism, the
bending sections are distributed among different
processors (Figure 7a). It is seen that the execution
time with four cores is reduced compared to the
two and three cores. However, using five and six
cores slows down the computation speed. The result
can be explained by the time that should be spent on
allocating data between the cores and on defining
local variables. When the number of data is low, the
reduction in the computation time due to paralleliz-
ation does not compensate the time required for
distributions. In the data parallelism, by distributing
the sources among different processors, the execu-
tion time is reduced by increasing the number of
cores (Figure 7b). The data parallelism of the bend-
ing code by partitioning the ray paths connecting the
sources to the stations into a number of parts equal
to the number of processors shows a similar result.
By increasing the number of cores, the execution
time of the parallel code is reduced more compared
to the serial code (Figure 7c).

5. Conclusions

Ray tracing as the forward problem is a time-
consuming part of seismic tomography. Accurate
tomographic images are obtained when tracing a
sufficient number of rays. Therefore, it is required
to speed up the ray tracing implementation. Since
ray tracing is an iterative process in which the true
path is created between each pair of sources and
receivers step by step, and, on the other hand,
determining the path between each pair of source
and receiver is independent of each other, the ray
tracing codes support well both data and task
parallelism. In this paper, we used the OpenMP to
parallel an existing pseudo-bending ray tracing
code and to show the advantage of exploiting both
data/task parallelisms by its shorter execution time.
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