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The present paper is an attempt to quantify probabilistic seismic demand of
three-dimensional structures under two-component (vector-valued) ground motions,
focusing on the collapse region of nonlinear response. While utilizing results of
de-aggregated vector-valued probabilistic seismic hazard analysis (V-PSHA) as
the seismic demand input, the assessment procedure is essentially based on results
of nonlinear incremental dynamic analysis (IDA) of the three-dimensional (3D)
model of the structure. Response of the structure is formulated based on the SRSS
combination of the structure maximum inter-story drifts in plan orthogonal
directions assuming log-normal distribution of the demands. The efficiency of
the proposed procedure is demonstrated via a detailed step-by-step example with
different period of vibrations and structural properties in orthogonal directions,
which proves the adequacy of the method for practical vector-valued probabilistic
seismic evaluation of regular and irregular structures.
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ABSTRACT

1. Introduction

Proper estimation of seismic risk to a structure
requires the consideration of both ground motion
hazard, to which the structure is exposed, and the
effect of such motions on the response of the
structure. The hazard is typically provided by
seismologists with the assessment of the effects of
ground motions on structures being a task conducted
by engineers. The structural response parameter is
usually referred to as "Engineering Demand
Parameter (EDP)", while the selected ground
motion intensity parameter is referred to as
"Intensity Measure (IM)" [1]. In probabilistic
performance-based seismic assessment procedures,
selection of an appropriate IM along with proper

estimation of structural responses as a function of
the selected IM plays a key role.

Various EDPs and IMs have been proposed so
far; all have their own advantages and disadvantages
in terms of accuracy, efficiency, sufficiency, and
practical possibilities [2-4]. Generally, it has been
shown in past studies (e.g. [2, 5, 6] that vector-
valued IMs consisting of multiple spectral accelera-
tions at different periods are sufficient and more
efficient predictors of the structural response, and
therefore provide more reliable seismic demand
assessments.

A majority of past IDA-based studies on probabi-
listic seismic assessment have primarily tended to
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focus on using single-valued IM, typically chosen to
be the spectral ordinate at the fundamental period
of the structure in its own plane )( 1TaS −  [1, 7] or
vector-valued IMs [2] in two dimensional (2D)
structural frames.

Owing to the fact that real structures respond in
a 3D sense and typically simple and, at the same
time, accurate representation of structures, especially
those with correlated orthogonal responses (such as
plan-asymmetric structures) via a 2D model is
generally not possible. The case would be much
more critical while considering the collapse region of
nonlinear response, it is necessary to deal with the
problem from a 3D point of view. Barbosa [6] and
Faggella et al. [8] utilized vector-valued IMs in
combination with cloud analysis results to assess
seismic demands of 3D structures without directly
accounting for post-peak and near-collapse regions
of response. Gehl et al. [9] studied the fragility (in
terms of probability of collapse) of a 3D masonry
structure by incorporating vector-valued PGA-PGV
representation of seismic demands. Their work was
also based on cloud analysis method. Many previous
investigations of vector-valued IMS have been based
on results of the cloud analysis method rather than
the results of incremental dynamic analysis (IDA)
[5].

The present paper is an attempt to quantify
probabilistic seismic demand of three-dimensional
structures under two-component (vector-valued)
ground motions considering the collapse region of
nonlinear response. In this regard, a vector-valued
IM, consisting of spectral ordinates at the fundamen-
tal periods of the structure in orthogonal horizontal
directions (vertical component of the ground motion
is not considered in this study) is employed along
with the results of incremental dynamic analysis
(IDA) of the 3D model of the structure with special
attention to the near-collapse region of response.
The efficiency of the procedure in practical
applications is demonstrated via a step-by-step
example for a  typical 3D reinforced concrete (RC)
structure with different period of vibrations and
stiffness and  strength characteristics in orthogonal
directions.

2. Estimation of Seismic Demands Using
Scalar-Valued IMs

In scalar probabilistic seismic demand analysis

(PSDA), the "demand side" of the problem is usually
expressed in the form of annual rate of exceedance
an EDP for a specified level of ground motion inten-
sity (typically chosen to be the spectral intensity at
the fundamental period of vibration of the structure

)).(
1TaS −  The final results is usually represented as

the EDP hazard curve [1]. This curve is calculated
on the basis of the following expression for any
intensity-measure (im) value:

      xd xMIdEDPPd IMxEDP )(][)( λ=>=λ ∫      (1-a)

where )(dEDPλ  is the annual rate of exceedance
the desired EDP (usually maximum inter-story drift)
from a certain "d" value ][ xMIdEDPP   =>  is the
probability that the EDP exceeds "d" given any
known IM (for example )

1TaS −  and )(xIMλ  is the
mean annual frequency of exceeding the IM from
a given intensity level "x". Numerical solution
techniques exist to solve the integral in Eq. (1-a);
however, under appropriate assumptions, closed-
form solution approaches are also possible [1]. The
above-mentioned approach is, indeed, an IM-based
one. Assuming that the displacement-based demand
has a lognormal distribution at each aS  level,

][ xMIdEDPP   =>  can be replaced by a standard-
ized Gaussian complementary cumulative density
function (CCDF) )( CΦ  [10] as follows:
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where "Φ " denotes the Gaussian cumulative density
function.

In order to take the collapse-level cases of
structural response into account, the conditional
probability ][ xMIdEDPP   =>  can be decomposed
into non-collapse and collapse cases using the total
probability theorem (TPT) [2, 11] as Eq. (2). Note
that in Eq. (2), EDP and IM have been replaced by
the maximum inter-story drift )( maxD  observed in
the structure and the spectral intensity at the
fundamental period of vibration of the structure
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where )(| xP
aSNCL  is the probability of no-collapse for

a given spectral level "x" and ))(1( | xP
aSNCL−  is the

probability of collapse for the same spectral level,
x). Probability of no-collapse and collapse can be
derived directly from the data provided by the
IDA analysis results. Such Methods have been
discussed in [1-2]. Regarding the collapse cases,
the probability that the demand )( maxD  exceeds any
finite drift, d, )|(|max

xdc
NCLDΦ  is equal to 1; thus

Eq. (2) can be reduced to Eq. (3) as:
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By substitution of Eq. (3) with Eq. (1-a) and
integrating, one can estimate the annual probability
of exceeding any drift value d taking the collapse
region of nonlinear response into consideration.
Note that the above process of determining non-
collapse and collapse cases is limited to scalar-
valued IM (Sa).

Baker and Cornell [2] extended Eq. (1-a) to
include a vector-valued IM consisting of Sa and a
random variable "ε" value, representative of spectral
shape of the ground motion.

3. Estimation of Structural Response of 3D
Structures Using Vector-Valued IMs

In this study, the demand side of the problem
has been considered to be the SRSS combination of
horizontal orthogonal inter-story drift values as a
representative of the seismic demands on each story
of the 3D structure. Considering the maximum
inter-story demands for 3D structures as the SRSS
combination of horizontal directions drifts conditioned
on bi-directional IMs, namely aXS  and aZS  (note that
for brevity, )1( iTaS −  has been replaced by aiS  and
y-direction is assumed to direct upward), Eq. (1-a)
can be rewritten using a vector-valued IM as:

dzdx
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where SRSSD −max  denotes the maximum SRSS
combination of maximum inter-story drifts observed

along orthogonal plan directions, aXS  and aZS
represent the spectral intensity levels at the
fundamental periods of vibration along X and Z

directions, respectively. Besides, zx
zx

   

ZXIM

∂∂

λ∂ − ),(,
2

denotes the absolute value of the second-order
derivative of the vector-valued hazard ),(, zxZXIM −λ
(at each zSxS aZaX    == ,  pairs, in this study) for a
specific site; to be obtained based on a probabilistic
vector-valued seismic hazard analysis (V-PSHA).
In discrete form, Eq. (4) can be written as Eq. (5),
which is appropriate for numerical integration:
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The conventional product of PSHA is typically
a scalar-valued "hazard curve" rather than a
vector-valued "hazard surface". For our purpose,
bi-directional (joint) representation of the seismic
hazard (at each zSxS aZaX    == ,  pairs)) is needed.
Such representation, introduces a "seismic hazard
surface" rather than the conventional "seismic
hazard curve" ([12-14]. The issue of vector-valued
seismic hazard analysis with its implications in
practical seismic design has been discussed before
[15-19].

Although utilization of vector-valued seismic
hazard surface (defined by )),(( , zxZXIM−λ  in Eq. (5))
is quite straightforward, due to the limitations in
accessing the few available computer codes for
generating such joint seismic hazard surfaces and
their documentations on the one hand, and the
unavailability of statistical correlation coefficients for
all types of IMs, on the other, reformulating Equation
(5) by means of de-aggregating the joint seismic
hazard function into scalar functions and utilizing
the widely available scalar probabilistic seismic
hazard analysis results has become a standard
procedure in vector-valued probabilistic seismic
demand analysis (V-PSDA) studies [6].

By disaggregating the ),(, zxZXIM −λ∆  term in
Eq. (5) using the definition of conditional probability,
Eq. (6) can be derived:
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By replacing Eq. (6) with Eq. (5) and using the
assumption that the drift demands follow a log-
normal distribution (This assumption could be
verified by statistical testing methods. For this study,
the authors have used two "normality tests"
developed by Doornik and Hensen [20], and Henze
and Zirkler [21] to verify the normality. Multivariate
normality of the natural logarithm of spectral
accelerations at multiple periods has also been
empirically tested by Jayaram and Baker [4]), one
can rewrite Eq. (5) as:
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where,
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By further de-aggregating the problem to take
no-collapse and collapse cases into account, similar
to Eq. (3) for scalar IM cases, Eq. (9) can be
established as the general formulation for estimating
the maximum inter-story drifts (in terms of SRSS
combination) throughout the structure by considering
the simultaneous effects of orthogonal horizontal
components of ground motions and the collapse
region of nonlinear response:

[ ]
[ ]

 x xSzSP

zxP

zxPzxD

SaXaXaZ

SSNCL

x all z all SSNCL
c
D

   

 

aZaX

aZaXSRSS
     

|)(|)|(

}),(1

),(),|({

,|

,|max

λ×==

×−

+∑ ∑ −

∆

Φ

(9)

The terms ),|(|max
zxDc

NCLD SRSS−
Φ  and

),(,| zxP
aZaX SSNCL  are calculated using results of

IDA analysis of the 3D model of the structure under
simultaneous application of horizontal components
of ground motion, the term )|( zSxSP aZaX ==  is
estimated as discussed below, and, finally, |)(| xSaXλ∆
is calculated as the absolute form of the values of
conventional scalar probabilistic seismic hazard
analysis at specific xSaX =  values.

Barbosa [6] has discussed in detail the numerical
calculation of )|( xSzSP aXaZ ==  for each

)|( zSxSP aZaX ==  pairs. This term is calculated as:
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in which m and r denotes the events magnitude
and distance to the fault, respectively. In Eq. (10),

),,|( rmxSzSP aXaZ ==  can be evaluated for each
triple ),, rmxSaX =  as derived by Barbosa [6]:
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where Φ  is the standard normal CDF of the argu-
ment, and (.)µ  and (.)σ  correspond to the conditional
mean and conditional standard deviation defining
the conditional probability density function (PDF)
of zSaZ =  given .,, rmxSaX =  Moreover ∆  is the
discretization step of spectral accelerations used in
the analysis. The conditional ),,|ln( rmxSzS aXaZ ==µ  and

),,|ln( rmxSzS aXaZ ==σ  can also be calculated using the
following equations [5-6]:
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In Eqs. (12-a) and (12-b), µ~  and σ~  are the mean
and standard deviation of scalar spectral accelera-
tions, calculated by using ground motion prediction
equations (GMPEs), and ρ denotes the statistical
correlation coefficient of the two spectral ordinates
corresponding to the fundamental periods of
vibration of the structure in horizontal orthogonal
directions.
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In this study, for the sample structure (to be
discussed later), the average of three GMPEs
available in NGW program (PEER), including the
Abrahamson and Silvia [14], Boore and Atkinson
[22], and Campbell and Bozorgnia [23] have been
used with equal weights to calculate µ~  and σ~  for
each spectral period. Besides, for calculation of the
correlation coefficients of spectral ordinates at the
fundamental periods of vibration of the structure in
horizontal orthogonal directions ),( ),ln( zSxS aZaX ==ρ
Eq. (13) according to Baker and Jayaram [24] was
used:

)(ln023.079.0 21),ln( T T   
aZaX zSxS −=ρ ==             (13)

where 1T  and 2T  denotes the fundamental periods
of vibration of the structure in horizontal orthogonal
directions.

The second term ))|,(( xSrmP aX =  in Eq. (10),
needs to be evaluated using standard hazard de-
aggregating procedure. Results of such procedure
for specific spectral periods are accessible via an
online interactive computer program developed by
United States Geological Survey [25]. Figure (1)
depicts one of such results for a specific site

Figure 1. Probabilistic seismic hazard de-aggregation for a typical site, IM = Sa(T = 1 sec), and 2% in 50 years (2475 years
return period) hazard level [25].

(considered for the example problem of this paper)
at T = 1 sec and 2% probability of exceedance in 50
years hazard level. Outputs of the program are, in
fact, the contribution of each pair of magnitude (m)
and distance-to-fault (r) to the total hazard under
specific conditions. The outputs provided by USGS
essentially gives the probability of )|,( xSrmP aX >
and not exactly the ).|,( xSrmP aX =  Thus, for our
purposes ),|,( xSrmP aX =  need to be calculated
according to Eq. (14) [6]:
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4. Example Problem: Step-by-Step Procedure
for Calculating the Seismic Demand of a Plan
Asymmetric 3D Structure Using a Two-
Component (Vector-Valued) Intensity
Measure (IM)

Based on the procedure presented in previous
sections, a three-dimensional structure will be
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examined to show the required steps for calculating
the drift hazard, ,EDPλ  considering the collapse
region of nonlinear response. Later, more detailed
discussions will be provided.

4.1. Problem Definition

The structure is a 6-story 3-span by 3-span
reinforced concrete (RC) structure designed accord-
ing to International Building Code [26] provisions.
Reinforcements detailing conforms to the ACI code
[27] requirements for "special moment resisting
frames". Span lengths are identical in both directions
equal to 5 meters and story heights are considered to
be of 3-meter high. Floor system is considered as
one-way reinforced concrete slab system. Columns
are 450 mm square sections in stories 1 to 4, and are
400 mm in stories 5 and 6, while beams have 450 mm
width and 500 mm height in stories 1 to 3, and have
400 mm width and 450 mm height in stories 4 to
6. Distributed dead and live loads on floors are 5.3
kN/m2 and 2 kN/m2, respectively. Concrete 28-day
cylindrical specified strength and rebar strength are
assumed to be 30 MPa and 400 MPa, respectively.
Floor slab are assumed to be rigid in their plane.

In order to make the orthogonal responses of
the structure quite correlated, uni-directional plan
eccentricity equal to 30% was imposed between the
center of mass (CM) and the center-of-stiffness
(CR) via displacing the CM of each floor along
the X-direction of plan. Fundamental periods of
vibrations of the structure are =1T 1.87 sec. and

=2T 0.96 sec. along the Z and X plan directions,
respectively. Due to the strong torsional effects and
the direction of transferring floor loads to the sup-
porting frames, reinforcements in the Z-direction
beam elements are typically around two times their
X-direction counterparts. Thus, the structure is
plan-asymmetric with highly correlated orthogonal
properties. Figure (2) shows typical stories plan of
the structure. We are going to estimate the annual
rate of exceedance specific inter-story drift value (in
SRSS sense) in the structure using the procedure
discussed in previous sections.

4.2. Nonlinear Modeling and Analyzing the
Structure

For performing nonlinear analyses, the structural
system was modeled using concentrated plasticity

Figure 2. Typical stories plan (The eccentricity "e" for the
example problem is set to be 0.3 L).

nonlinear modeling approach [28], in which hinges
are modeled and defined at the ends of each frame
element. As discussed in [29-3], concentrated
plasticity models could be used for collapse-state
analysis of structures by considering all degradation
sources including the loading and reloading
stiffness, peak-strength and hardening zone stiffness
degradation effects in each cycle of response. Ibarra
et al. [31] proposed a hysteretic model, based on the
kinematic hardening rules, applicable for nonlinear
modeling of RC structures to assess their collapse
behavior. The model known as "peak-oriented
hysteretic model" is depicted in Figure (3). All
required parameters to define the elastic, peak and
post-peak response of elements under monotonic
and cyclic behaviors were calculated according to
the design properties of the structure [32] and the
recommendations of FEMA [28], Haselton [30] and
Ibarra and Krawinkler [33].

The model was built in OpenSees platform [34]
by using CECARC-3D; a graphical pre- and
post-processor for OpenSees designed by the authors
for modeling and analyzing nonlinear static and
dynamic response of 3D reinforced concrete
structural systems [35]. Elastic analyses of all
models were performed using appropriate cracked
section properties based on recommendations
outlined in FEMA P-695. According to FEMA P-695,
since all formulas have been derived based on
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Figure 3. Hysteretic model of RC elements with stiffness and strength degradation [33].

regression analyses on extensive experimental test
data, and that, all sources of strength and stiffness
degradations have been captured in the tests, it is not
required to model the beam-columns joints and bar
slip effects explicitly. Thus, the building model was
created using center-to-center frame elements with
concentrated nonlinear springs located at the two
ends of each frame element. Geometric nonlinearities
including the global P-∆ as well as the local p-delta
effects were considered in the model utilizing co-
rotational formulation [34].

Mass properties of the structure were modeled
using concentrated mass elements at the nodes.
Nodal masses were assigned such that the desired
30% plan CM-CR eccentricity could be achieved.
Damping was considered as of Rayleigh mass and
stiffness proportional type based on the recommen-
dations in Zareian and Medina [36]. It is interesting
to note that, with the advent of the parallel version
of the OpenSees analytical platform [34], high-
speed nonlinear time-history analyses of the building
was possible on a multi-core PC.

4.3. Pushover Analysis Results

Pushover analysis was performed on the struc-
ture in both plan directions to examine its overall
response up to the point of global instability
(collapse) according to recommendations outlined
in ASCE/SEI 41-06 [37]. Figure (4) depicts the
pushover curves of the structure in both plan X and

Figure 4. Pushover curves of the structure.

Z-directions with the control node being the center
of mass (CM) of the roof. Significant differences
are evident between the curves that are directly
attributable to the high plan irregularity of the struc-
ture and the strong coupling effects of translational
and torsional responses. Differences are especially
evident in the elastic stiffness, lateral load capacities,
structure yield and ultimate achievable drift that
altogether affect the structural properties such as
"elastic periods of vibrations", "peak strength",
"structural over-strength" and "period-based
ductility" factors. During the analysis steps, the
Z-direction pushover curve stopped at a drift value
approximately equal to 3.8% due to shear failure in
the columns on the "soft side" frames of the plan.
Decreasing of the ductility of the structure is evident
for the Z-direction response of the structure due to
severe torsional adverse effects.
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4.4. Incremental Dynamic Analysis (IDA) Results

The key step of the evaluation procedure is to
perform nonlinear dynamic analysis of the structure
in both directions under a set of records with varying
intensities. This analysis procedure is commonly
termed as "incremental dynamic analysis (IDA)"
[7].

For both X and Z plan directions, the procedure
outlined in FEMA P-695 [28] was utilized for
scaling-up the records. In that procedure, record
scaling involves two steps. First, individual records
in each set are normalized by their respective
peak ground velocities. This step is intended to
remove unwarranted variability between records due
to inherent differences in event magnitude, distance
to source, source type and site conditions, without
eliminating overall record-to-record variability. In
the second step, normalized ground motions are
collectively scaled to specific ground motion
intensity such that the median spectral acceleration
of the records set matches the spectral acceleration
at the fundamental period, T, of the model that is
being analyzed. The first step has been performed as
part of the ground motion development process in
FEMA-P695, so the record sets contained in
FEMA-P695 already contain this normalization. The

Table 1. Ground Motion records used for the example problem.

second step is performed as part of the nonlinear
dynamic analysis procedure.

For scaling purposes, in this study, the geometric
mean (GM) of periods of vibrations in orthogonal
directions ).( zxGM TTT    =  was used along with
the geometric mean (GM) of strong and weak
components spectra of all ground motions in the
records set. Then, the scaling factor was calculated
for each desired spectral intensity on the median GM
spectrum at .GMT  At the end, the calculated scaling
factor was applied to both strong and weak compo-
nents of all ground motion records. Table (1) shows
the ground motion records used in this example.
Selected from FEMA P-695 [28], all have been
picked up from PEER NGA online database [38].
This set of records includes various ground motions
normalized based on their PGVs and the normaliza-
tion procedure per FEMA P-695. They are all
considered to be far field records. Strong components
of the records were applied in the Z-direction
while the weak components were placed along the
X-direction of the plan. In Figure (5), the median
pseudo-acceleration response spectra of all records
for both strong and weak components are shown
with the median of the geometric mean of both
components of all ground motions.
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Figure 5. 5% damped median pseudo-acceleration response
spectra of all records for both strong and weak
components and the median spectrum of the
geometric mean of both components spectra of all
ground motions.

Results of such bi-directional IDA were com-
bined to obtain the maximum SRSS inter-story drift
responses vs. the GM combination of both directions
spectral intensities  For each ground motion, IDA
was continued until one of the "collapse criteria"
considered in this study was met. Three collapse
criteria including flattening the IDA curve, exceed-
ing maximum SRSS inter-story drifts by 10% and
premature elements (primarily columns) failure
(elements failure limit states) were examined for
each analysis case.

Figures (6-a), (6-b) and (6-c) respectively depicts
the maximum X-direction inter-story Drifts vs.

,XaS − maximum Z-direction inter-story Drifts vs.
,ZaS −  and maximum SRSS of inter-story Drifts vs.

GMaS −  for all ground motions with the median curves
overlaid in black.

The authors found that detecting the col-
lapse-level spectral intensity for 3D structures
would be possible more conveniently using

SRSSD −max  vs. GMaS −  data rather than considering
),( max SRSSXa DS −−  and ),( max SRSSZa DS −−  pairs sepa-

rately or ),,( max SRSSZaXa DSS −−−  triples. Note that
),,( max SRSSZaXa DSS −−− triples are plotted in Figure

(9) in the following pages. Flat lines correspond
to the GMaS −  intensity levels at which the collapse
of the structure has occurred. Collapse-level
intensities will be used below to calculate the
probability of  collapse (and no-collapse) conditional
on .GMaS −

Figure 6a. Maximum X-direction Inter-story Drifts vs. Sa-X .

Figure 6b. Maximum Z-direction Inter-story Drifts vs. Sa-Z .

Figure 6c. Maximum SRSS of Inter-story Drifts vs. Sa-GM .

5. Probability of No-Collapse and Collapse at
Any IM Level

As mentioned in the derivations of the previous
sections, for calculating the annual rate of SRSS
drift exceedance using the disaggregation technique,
probability of no-collapse, namely, 

aS  NCLP |  the
probability ,1 | aS  NCLP−  of collapse  have to be
estimated at various IM levels. For this structure,
collapse intensity levels were found according to
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the results of incremental dynamic analyses, Figure
(6-c), for each record by accounting for the collapse
criteria mentioned before. Then, assuming a
log-normal distribution of the collapse spectral
acceleration [28], a continuous log-normal cumu-
lative density function (CDF) curve was fitted to
all available 21 collapse data points. Figure (7)
depicts the cumulative density of collapse data
points with the fitted CDF curve. The curve is also
referred to as the "fragility curve" of the structure.
The plot essentially gives the "1" | aS  NCLP−  term at
each  ). ZaGXaGMa SSS  −−− =  intensity level.

Figure 7. Fragility curve of the structure (probability of collapse
vs. ZaXaGMa S SS −−− = . .

6. Calculation of Seismic Hazard Surface Using
Deaggregation Procedure

The sample structure is assumed to be located in
a far-field site in California (California was selected
because seismic hazard deaggregation results
are available via the online interactive computer
program accessible from the USGS website) on
NEHRP soil type D. As stated before, in this study,
average of three GMPEs available in NGAW
program (PEER [38]) with equal weights, namely
the Abrahamson and Silvia [14], Boore and
Atkinson [22] and Campbell and Bozorgnia [23]
have been used for calculating the scalar term of
the seismic hazard deaggregation.

Deaggregating procedure, as discussed, was
performed using USGS online interactive computer
program which is available for the state of
California. It should be noted that, the USGS outputs
are available at specific discrete values of spectral
periods. Since deaggregation results were not

available exactly for T = 1.87 sec. and T = 0.96 sec.,
the authors used the available results for T = 2.0 sec.
and T = 1.0 sec., respectively. Thus, USGS needs
to provide deaggregation results for more spectral
periods to be fully applicable in engineering
practice. Figure (8) shows the stem plot of joint
mean annual rate (MAR) of )( XaS −  and )( ZaS −

calculated using Eq. (6). The calculated joint
seismic hazard surface will be utilized in the next
section to calculate the probabilistic seismic demand
analysis of the example problem.

Figure 8. Stem plot of joint mean annual rate (MAR) of equaling
seismic hazard XaS −  and .ZaS −

7. Calculation of Drift Hazard Curve

In this section, drift demands of the 3D example
structure will be estimated according to the SRSS-
based probabilistic formulation presented before. As
mentioned in previous sections, it is assumed that
the SRSS drift data follow a Gaussian log-normal
distribution with the "mean value" equals to____________

max SRSSD −  and "standard deviation" (dispersion)
equals to .

max SRSSD −
β  Both of these parameters can

be estimated from regression analysis on all
maximum SRSS drift data points. Therefore, a
regression analysis on median 

____________

maxln SRSSD −  vs. both
XaS −ln  and XaS −  is needed. Figure (9) shows all

SRSS drifts points vs.  XaS −  and ZaS −  along with
the fitted plane.

Using standard regression procedures, a polyno-
mial two-variable function is fitted to natural
logarithmic of all triples. Eq. (15) shows the fitted
polynomial. The coefficient of determination (R2)
of the fitted function at 95% confidence bounds is
0.6236.
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Figure 9. Scatter plot of )ln( max SRSSD −  vs. )ln( aXS  and )ln( aZS  with the fitted plane.

578.2ln114.0ln5987.0

ln
____________

max

−+

=

−−

−

XaZa

SRSS

SS

D
                (15)

Now, all the elements required for calculating
the drift hazard curve are available. For simplicity,
the standard deviation (dispersion) of median SRSS
drift values conditioned on )(,

max SRSSDaZaX SS
−

β  is
assumed to be of constant value of 0.40 for
this example based on evaluating dispersion of

SRSSD −max  at different levels of spectral acceleration
),( aZaX SS  pairs and judgment made by the

authors.
By estimating 

____________

maxln SRSSD −  from Eq. (15) and
β = 0.4, the following Equation gives the log-normal
uni-variable Gaussian CCDF [10]:

(16)
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(17)

Recall that the ( ) |)(|| xxSzSP     SaXaXaZ λ×== ∆
product is the joint seismic hazard function of the
site which was calculated before, Figure (8).

Figure (10) shows the drift hazard curve (the
solid curve) of the structure derived using Eq. (17)
and the data specific to the example. For com-
parison, the drift hazard curve was also calculated
without considering the collapse region of nonlinear
response (i.e. excluding the NCLP  and CLP  in Eq.
(17)). This curve is depicted in Figure (10) (the
dashed curve). It is clearly observed that taking
the collapse region of nonlinear response into
account affects the mean annual rate of exceedance
a specific SRSS drift value significantly and thus
represents the seismic demand of the structure
more accurately. As it is observed, assessing the
seismic demands of the structure based on the
hazard drift hazard curve of Figure (10) is similar to
assessing such demands in 2D structures. The
resulting drift hazard curve is appealing from


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Note that in Eq. (16), D represents the maximum
SRSS drift demand of the structure.

Substituting the above-calculated (.),CΦ  the
estimated 

GMaS  CLP
−|  (and )| GMaS  NCLP

−
 from values

extracted from Figure (7), and 
____________

maxln SRSSD −  from
Eq. (15) into Eq. (9) yields:
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Figure 10. Probabilistic seismic drift demands of the structure
(drift hazard curves).

practical points of view. This concludes the example.
In practical applications, however, the user may

generally need to assess the )(DEDPλ  two times: first
when the strong component of the ground motion is
placed in z-direction, and second when the weak
component of the ground motion is placed in z-
direction, and then calculating the SRSS drift hazard
curves two times. The worst case will govern the
design. This is not, however, needed for the highly
irregular example structure of this paper; since the
z-direction frames control the response due to the
severe torsional effects and large ∆−P  demands on
these frames.

8. Conclusions

A practical procedure was presented to assess
seismic demands of three-dimensional structures
considering the collapse region of nonlinear response
in a probabilistic framework. The procedure essen-
tially utilizes vector-valued intensity measures based
on the two horizontal components of the ground
motion spectral intensities at the fundamental modal
periods in both principle directions of the structure.
The procedure of calculating the drift hazard curve
of the structure was developed based on a vector-
valued representation of seismic hazard considering
both components of horizontal ground motion along
with the scalar SRSS combination of horizontal
components of inter-story drift values as the demand
parameter. The procedure was applied to a plan-
asymmetric three-dimensional structure with highly
correlated seismic responses in both orthogonal
directions under the effects of a far-field record

set of ground motions in a step-by-step example.
The example demonstrated the efficiency of the
proposed method for practical probabilistic evalua-
tion of real structures.
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