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1. Introduction

One of the most critical steps of seismic hazard and risk analysis is selecting
the appropriate GMPEs to address strong ground motion based on earthquake
parameters. In fact, appropriate modeling of this epistemic source of uncertainty in
analysisisa non-trivial approach that isan active area of research. Fromstatistical
point of view, this issue can be resolved by measuring the good-of-fit, which
describes how well a model fits a set of observations. In this study, the suitability
of a set of local, regional and global GMPESs based on the three approaches of LH,
LLH and EDR for two distinct seismotectonic regions of Iran have been assessed.
Analyses show general compatibility between the order of ranking in both
approaches of LH and LLH while the order of ranking in EDR approach shows
significant differences. This contradiction come from their conceptual differences,
in which the approaches like LH and LLH the overall performance of a model
is assessed in an index and the individual effect of other parameters are not
examned.

Estimation of probabilistic seismic hazard in a
region is one the most important challenges in the
field of engineering seismology. The main goal of
such analysis is to estimate the probability of the
occurrence of a given ground motion parameter in
future time window. Such information provides
valuable basis for deriving of design ground motion
parameters in structural codes and standards.
Additionally, it is a key step for the evaluation of
seismic risk and loss estimation in aregion. The most
prevalent approach for quantifying such parameters

is the approach proposed by Cornell (1968) [1] and
then enhanced by Mc-Guire [2]. This approach is
formed based on the total probability theorem in
which the probability of the occurrence of a given
strong ground motion is estimated by integrating
possible earthquake sources and their resulting
ground motion values over time. Despite of its
straightforward implementation of the conventional
approach, the proper way of incorporating of uncer-
tainties in analysisis a great challenge and is one of
the most active areas of the research. The terms
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aleatory and epistemic describe the key elements
of total uncertainties. The first one describes the
uncertainty due to intrinsic randomness nature of
the event, which is modeled and calculated by the
basic formulation of the conventional approach, and
the latter one represents the uncertainty due to lack
of scientific knowledge about the model and its
parameters. This source of uncertainty is taken into
account by means of the logic tree approach that is
described by Bommer et al. [3]. The main focus of
this paper is manipulating of the epistemic uncertainty
related to the sdection, ranking and weighting of
ground motion prediction equations (GMPES),
which is necessary for performing PSHA analysisin
the conventional approach.

GM PEs describe the decay of ground motionwith
distance as a function of earthquake magnitude,
distance, and site characteristics to compute the
probability of exceedance acceeration from a given
value. The point that should be considered in this
regard is that the GMPEs are derived from incom-
plete knowledge about the earthquake source and
wave propagation throughout a complex media.
Therefore, full reality cannot be modeled in GM PEs.
This meansthat all GM PEs are approximate relation
for the estimation of unknown true value. In this
manner, sdection of the most appropriate GMPES
and determining of their corresponding weightsto be
used in logic tree is a challenging issue. From
statistical point of view, this issue can be resolved
by measuring the good-of-fit that describes how
well amodd fits a set of observations. In thisregard,
two approaches of the likdihood and average log
likelihood (LH and LLH) proposed by Scherbaum et
a. [4-5] are popular amongst the seismologists. In
both approaches, the suitability of a GMPE mode
is examined by residual of observed data with
respect to the predictive modds. Hintersberger et al.
[6], Ghasemi et al. [7], Delavaud et al. [8], Mousavi
et al. [9], Zafarani and Mousavi [10] used these
approaches for the selection and ranking of GMPEs
in different regions. Kale and Akkar [11] represent
an alternative approach based on the Euclidian
Distance (EDR) for ranking of GMPEs. In that
approach, ranking procedure is done based on the
two different indices; the ground motion uncertainty
and the biased between the observed ground motion
data set and the median value of GMPEs. Pave et
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al. [12] evaluated the applicability of various GMPES
in Vrancea sub crustal seismic zones by implement-
ing the EDR approach.

In this paper, the suitability of a set of candidate
GMPEsfor Iranian plateau based on the approaches
of LH, LLH and EDR will be assessed, and the
result of different approaches will be compared.
These analyses will be performed for two different
seismotectonic zones of Zagros, and Alborz and
central Iran (Figure 1). This separation is due to
the differences in seismotectonic and geological
characteristics between those regions which are
reflected inthestudies of Mirzaieet d. [13], Berberian
[14], and Nowrozi [15].

Infollowing, first, a brief review of the principles
of theranking approaches of LH, LLH and EDR will
be presented. Then, testing dataset used for ranking
of GMPEs in Zagros and Alborz regions will bein-
troduced. Finally, theresult of various approaches of
the ranking procedures in two regions for a set of
candidate GM PEs will be represented and compared
comprehensively.

2.TheLH, LLH and EDR Ranking Procedures
of GMPEs

Scherbaum et al. [4] studied various approaches
of the hypothesis testing methods for the evaluation
of the suitability of GMPEs and proposed a
quantitatively likelihood approach (LH). In that
approach, the goodness of fit of a modd to some
observed data is assessed based on a likelihood
parameter as LH value that determines the pro-
bability of exceedance of the normalized residuals
for any observation with the following relation.

2w g z| )
LH(|ZO|):ﬁf@e dt:Erf{%,oo} (1)
/2

where Z, is a normalized residual and defined as
the difference between the observed and predicted
valuedivided by the standard deviation of GM PE and
Erfis an error function for normalized residual. By
this equation, the normalized residual is assumed to
follow the lognormal distribution map into a uniform
distribution as LH. In this approach, an ideal modd,
which is assumed to follow a lognormal distribution
with zero mean and unit variance, transforms into
an evenly uniform distribution with a median LH
value equal to 0.5. Any deviation in the mean and
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Figure 1. Seismotectonic map of Zagros, and Alborz and Central Iran.

standard deviation of the lognormal distribution will
be reflected in the median and standard deviation of
the LH values. Scherbaum et al. [4] represent a
classification scheme for GMPEs based on the
median value of LH (MEDLH), absolute value of
the mean and median of normalized residual
(MEDNR and MEANNR), and their standard
deviation (STDNR).

It should be mentioned that the LH procedure
represented by Scherbaum et al. [4] is based on the
total residual and the variability of inter-event (i.e.
event to event) and intra- event (i.e. within event)
residuals are not considered. This issue may result
in biased; especially in cases where certain events
provide large numbers of records to the overall
dataset [16]. To this end, Stafford et al. [16]
represented a modified equation for the calculation
of LH asfollows:

LnY; - LNY; —n; )

©

InL=37>" ln[%@[ ©
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where n; is the inter-event residual of the i earth-
quake and determined by Equation (3).

Y
n; = ‘EZI\/E—+62 3

In Equations (2) and (3), the N is the total
number of earthquakes contributing records to the
dataset, with the ith event contributing ni records,
and ¢(x) is the probability density function of the
standard normal distribution; r; is thetotal residual
that is defined as the difference between the observed
value (;) and median estimate (Y;). It should be
noted that in this study, the separation of inter-event
and intra-event residual is not considered because
our testing dataset is not composed of events with a
large number of observations that may bias the
results. The distribution of inter-event and intra-
event residual is assessed visually.

The dependency of LH method to ground motion
data size and the need for subjectively decision
about the threshold of acceptance are the main

141



Mohammad Fallah-Tafti, Kambod Amini-Hosseini, Erfan Firuz, Babak Mansouri, and Anooshiravan Ansari

shortcoming of LH approach. To overcome these
weaknesses, Scherbaum et al. [5] represent an
aternative approach for assessing the appropriate-
ness of GM PEs based on the information theory. In
term of information theory, the relative information
loss or the Kullback-Leibler distance that is defined
as the difference between the expected value of the
true model and the expected value of approximate
mode with respect to the true modd, is used as an
index for suitability of an approximate modd.

D(f,g)=E;(log,(f))- E;(log,(g)) 4

By thisscheme, in comparison of twoapproximate
models (e.g. g1 and g2) the expectation of the
unknown true term cancelled out from the formula-
tion and just the expectation of the approximate mode
with respect to the true modd is remained, and this
term is estimated by the average log likelihood.

LLH ﬁzﬁllogz(g(x,-)) (5)

In Equation (5), the LLH value that represents
the probability of occurrence of observed samples
by the consideration of the probability distribution of
the GMPEs is used as an index for appropriateness.
In this context, the lower value of LLH implies the
better mode. It should be noted, in theory, that the
LLH approach can be applied to whatever amount
of data, but a question come to mind "what is the
minimum number of required observation to achieve
a stable result?' In this regard, Beauval et al. [17]
performed a synthetic test on the LLH values and
pointed out that at least ~40 observation is required
to achieve stable results. Scherbaum et al. [5]
represent the following relation for assigning
appropriateweightsto the GMPEs based onthe LLH
values:

LLHj
2*'09(2 »

S el ®)

Although the LH and LLH are the powerful
approaches for sdecting and ranking of GMPEs,
they may result in unrealistic ranking of GM PEs due
to combining of all characteristics of a model in
formulations. In these approaches, the other features
of a model like aleatory uncertainty, magnitude
scaling, distance scaling and site effect are not tested
separately. Kale and Akkar [11] by implementation
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of an illustrative example, showed that in cases that
two models represent similar values of median, the
LLH approach favors the modd with higher values
of standard deviation. In particular, this conservative
asgpect of LLH in seismic hazard analysis of critical
structure such as nuclear power plants, which is
designed for a very long return period, may culmi-
nated in inappropriate selection and ranking of
GMPEs. Based on the above explanation, Kale and
Akkar [11] introduced an alternative approach for
ranking of GMPES based on the Euclidean distance
concept. In that approach, the aleatory uncertainty
of GMPEs and the bias between the observed
ground motion data and the predicted values, as the
two major features of GMPES, are considered in
assessing the appropriateness of GMPEs with
different indices and the ultimate ranking is
represented based on the combination of these
indices. Theconsideration of thealeatory uncertainty
of GMPEs in ranking procedure is analogous to the
implementation of predictive modds in PSHA. That
is by assumption of the normal distribution for the
logarithmic distribution of GM PEs, the estimation of
variouslevels of probability is obtained. Then, by the
summation of the differences between the observed
data and the possible range of GM PE with consider-
ation a band which is a multiplier of standard
deviation, the modified Euclidean distance (MDE)
is obtained. In the context of the EDR ranking
procedure, the MDE index stands for the aleatory
uncertainty of GMPEs. The second index of ranking
of GMPEs in EDR approach is the trend between
the observed data and corresponding median of
GMPEs that is an indicator of the bias. The bias is
measured by the k parameter, which is the ratio of
Euclidean distance original observed data set and the
Euclidean distance of the corrected values. Clearly,
for an ideal unbiased modd the « parameter will be
equal to one. The final form of the EDR ranking
procedure that is a combination of the above indices
is represented as below:

EDR:JK%Z,.’YIM DE? ©)

where N is the number of observed dataset. In
Equation (7), the k parameters act as penalty in the
case that there is bias between the modd and ob-
served data. Based on the above formulation, the
smaller value of EDR represents the better modd.
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3. Composition and Processing of the Testing

Database

In many researches, the differences of seimo-
tectonic and geological characteristics between
Zagros, and Alborz and Central Iran zones are
highlighted. Accordingly, in this study, the suitability
of various GMPEs are evaluated separatdly in these
two regions. Based on Mirzaieet al. [13], theZagros
and Makran considered as a single region and
Azerbaijan-Alborz, Kopeh-Dagh, and central-east
Iran considered as another region (Figure 1).

Providing a reliable database for testing the
appropriateness of GMPEs is a fundamental pre-
requisite for such analysis. This database should
cover earthquake parameters, station characteristics
and record information. In this research, the dataset
used to test the applicability of GMPES has been
acquired from the Iranian Strong Ground Motion
Network operated by Building and Housing Research
Center (BHRC). In addition, the high-quality dataset
represented by Zafarani and Soghrat [18] is con-
sidered in developing the strong ground motion
dataset. The final dataset is composed of 348
three-component accelerograms from 93 earthquakes
in which 180 records from 42 earthquakes belong
to Alborz and Central Iran and 168 records of 51
earthquakes belong to the Zagros region. It should
be mentioned that the database is sdlected somehow
to be compatible with the validity range of candidate
GMPEs. To this end, the dataset restricted to the
events with epicentral distance between 5 to 100 Km
and the moment magnitude greater than 5.0. In
Figure (1), the distribution of sdected earthquakes
and stations is depicted. In attached dectronic file, a
detailed characteristics of the database including the
date and time of event, magnitude, location of events
and station, epicentral distance, VS30 and the code
number is presented.

The earthquake parameters of the dataset are
extracted from the Global Centroid Moment Tensor
(GCMT) in which for all events, full waveform
inversion was performed and moment tensor, moment
magnitude and focal depth are available. The style of
faulting for each event has been determined based
on the obtained moment tensor and adopting the
approach proposed by Frohlich and Apperson [19].
Considering the GCMT catalog, all distance metrics
including R the shortest distance between the
station and the rupture surface, ij, the Joyner-Boore
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distance that is closest horizontal distance to the
surface projection of the causative fault, Rep,.,
epicentral distance and Ryp, hypocentral distance
for all events have been determined. Reliable
estimation of distance parameters is a critical
feature of the database since various GMPES use
different distance metrics for describing the source
to sitedistance. In Figure (2), the magnitude distance
distribution of the dataset in Zagros and Alborz and
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Figure 2. Magnitude distance distribution of events based on
the style of faulting in a) Zagros b) Alborz and central
Iran.
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central Iran with respect to various styles of faulting
is shown. As it is clear, the dominant rupture
mechanism is reverse that is followed by odd and
strike-dlip. Regarding the events with unknown style
of faulting, a sensitivity analysis was performed. The
analysis indicates that the order of ranking is not
significantly changed by omitting eventswith unknown
style of faulting and averaging ground motion
shaking resulting from strike-slip and reverse
mechanisms. Nevertheess, in thefinal analysis, only
events with known mechanism is used. This
restriction filtered out 85 and 105 records from the
Zagros and Makran as well as Alborz and Central
Iran, respectively.

For processing the uncorrected time histories, a
uniform procedure based on the nonlinear adaptive
wavelet de-noising method proposed by Ansari et
a. [20] has been used. Ansari et al. [20] pointed out
that the displacement response spectra of wave et
de-noising records are more stable than conventional
filtered records with respect to different correction
functions. By using that approach, it is possible to
retrieve a large number of records that were not
possibleto be corrected using conventional approach
of correction.

The soil characteristic of stations is another
critical parameter that should be considered in the
database. The soil amplification is modeled in the
GMPEs dther by the definition of a dummy variable
standsfor different soil types or by the average shear
wave velocity over the top 30 meters (VS30) which
is applied in the more recent GM PEs. Although the
shear wave velocity (VS30) can be estimated by the
proxy approaches such as the topography slope [21]
or using Horizontal to Vertical Spectral Ration
(HVSR) [22]. Here, for reducing the uncertainty,
only records are considered in the database which
the VS30 is measured. In Figure (3), the magnitude
distance distribution of events for different soil
types based on the definition of National Earthquake
Hazard Reduction (NEHRP) is presented.

The way of combining two horizontals, orthogo-
nal components of ground motion records to a single
value is another point that should be considered in
database. While the older GMPEs use simple para-
meters such as the maximum value, average or the
geometric mean of two horizontal components,
recent GMPEs utilizes the more complicated
parameters such as GMROT50 and the average hori-
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zontal rotation independent (RotD50) defined by
Boore et al. [23] and Boore [24]. The latter is the
definition that is used in the NGA-West2 modds.
Some studies have shown that theratio of GMRot150
to geometric mean is near unity. Zafarani e al. [25]
used the geometric mean in developing their
relation. Here, to avoid any inconsistency, all of the
above definitions of the combination of horizontal
components for each record have been obtained, and
for evaluation of various GMPEs the corresponding

‘ @ NEHRPB  AANEHRPC CONEHRP D
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Figure 3. Magnitude distance distribution of events based on
the sail type in a) Zagros b) Alborz and central Iran.
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definitions with respect to the predictive modd were
used.

4, Selection of the Candidate GM PEs

Sdecting appropriate predictive models amongst
a large amount of available GMPEs needs a
series of criteria. This subject is of interest of many
researchersincluding Cotton et al. [26] and Bommer
et al. [27]. Cotton et a. [26] proposed seven criteria
for the sdection and ranking of GMPEs and later
Bommer et al. [27] has updated those criteria.
Accordingly, 11 candidate GMPEs have been
sdlected. In Table (1), list of candidate GMPEs with
their abbreviation and their main characteristics are
presented. Amongst them, the relation of Getal09
has been developed specially for the region of Iran,

relations of AB10, AC10 and Ketal15 have been
developed based on the regional dataset, the relation
of NGA-WEST?2 has been developed based on the
global dataset, and Zetal06 and Ketal06 have been
developed mainly based on the Japan's events. It
should be noted that the relations of Zafarani and
Soghrat [39] and Soghrat et al. [40] are not con-
sidered in the candidate GMPEs, because these
relations have been presented for a specific zone of
Iran not the whole country.

Amongst the candidate GMPEs, the reation of
Getal09 is the simplest modd which uses a dummy
variable for considering different soil types. Style of
faulting is not considered in that relation, which do
not comply with the criteria of Bommer et al. [27]
and therefore, should be disregarded. However,
because of the good performance of this relation

Table 1. Main characteristics of candidate Ground Motion Prediction Equations.

. . . . Site Effect
M Dist . Period
GMPE Acronym a.m Magnitude s an.ce Component erio (Number of
Region Mw) Metric Range Soil Classes)
Kale et al. [28] Ketall5 Turkey, Iran 4.0-8.8 Rjp, 0-200 PGA’ir]:(éV’ SA 0-4 sec Vs30
. . PSAin Dummy
Ghasemi et al. [29] Getal09  Iran, West Eurasia 5.0-7.4 Rpyp, 0-100 GMRotl50 005-3.0 sec Variable (2)
Europe, Middle ) . Dummy
Akkar Bommer [30] ABI10 East 5.0-7.6 R, 0-100 PGA, SAin G 0-3.0 sec Variable (2)
PGA, PGV,
Akkar Cagnnon [31] AC10 Turkey 4.0-7.4 Rjp1-200 . 0-2.0 sec Vs30
SAin G
Worldwide shallow
Crustal with PGA, PGV, SA
Abrahamson et al. [32]  ASKI14 Concentration 3.0-7.9 Riup, 0-400 in RotD50 0-10 sec Vs30
from California
Worldwide
Campbell and Bozorgnia Shallow Crustal PGA, PGV, SA
[33] CB14 with Concentration 3079 Ruup, 1-300 in RotD50 0-10 sec Vs30
from California
Worldwide
Shallow Crustal PGA, PGV, SA
Boore et al. [34] BSSA14 with Concentration 3.0-7.9 Riup, 0-400 in RotD50 0-10 sec Vs30
from California
Worldwide
. Shallow Crustal PGA, PGV, SA
Chiou and Youngs [35] CY14 with Concentration 3.5-7.9 Reup, 1-300 in RotD50 0-10 sec Vs30
from California
Worldwide
. Shallow Crustal PGA, SAin
Idriss [36] 114 with Concentration 4.5-7.9 Riup, 1-200 RotD50 0.01-10 sec Vs30
from California
Japan + some PGA, PGV, SA Dummy
Zhao et al. [37] Zetal06 Foreign 49-72 Rpyp, 0-280 nG 0-5.0 sec Variable (4)
Kanno et al. [38] Ketalgg ~ 13pan+ some 5.0-8.0 Rup 1400 TOAPGVSA 56 cec Vs30
Foreign inG

* G: Geometric mean, GMRotI50, rotation-independent average horizontal component, RotD50, average horizontal rotation independent

(RotD50)
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reflected in the studies of Zafarani and Mousavi [10]
and Mousavi e al. [9], it is preferred to retain this
relation. Ketall5 is the most recent and the most
complicated predictive model among the regional
candidate GMPEs. It considers the nonlinear soil
behavior as well as the rupture mechanism that is
a rare feature in lranian GMPEs rdations. In that
relation, the effects of regional differences between
Iran and Turkey that originates from differences in
Q factors, kappa, and near-surface velocity are
considered. AB10 has been developed based on the
data of Europe and Middle East; in that relation
different soil types have been considered in the
relation by a simple dummy variable that imposed
a high value of uncertainty. The rdation of AC10
has been developed based on the compiled Turkish
database for estimation of peak ground acceleration,
velocity and spectral acceeration. In that relation,
the style of faulting and the linear and nonlinear
response of the soil are considered in estimation of
the ground motion values.

The NGA-West2 models are another group
of GMPEs used in the ranking procedure. The
NGA-West2 project is a large multidisciplinary,
multiyear research program on the Next Generation
Attenuation (NGA) models for shallow crustal
earthquakes in active tectonic regions. This is the
second phase of the NGA project that is followed by
the NGA-West1 in which five developer teams
work independently but interactively with each other
to develop ground motion models applicable to
different geographical regions. Updating NGA
models for small, moderate and large events,
developments relation for vertical component,
considering damping scaling, modding of directivity,
analysis of epistemic uncertainty, and further
development of site response are the key issues of
NGA-West2 project. The main features of each
mode are comprehensively published in a series of
reports by Pacific Earthquake Engineering Research
Center (PEER). Besides, in Gregor e al. [41] a
detailed comparison of NGA-West2 isintroduced. In
this study, the five NGA-West2 modes (ASK 16,
BSSA16, CB16, CY16, and IM16) are considered
in the ranking procedure of GMPEs based on the
Iranian ground motion database.

Themajor challenging issue in implementation of
the NGA-West2 models in Iran is the lack of
sufficient knowledge about some of the input
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parameters. Parameters such as depth to top of
rupture (Z,,o), depth parameters of Z, , and Z, .
that are defined as the depth at which the velocity of
shear velocity is equal to 1.0 Km/s and 2.5 Kmy/s,
and R, used for quantifying the hanging-wall are the
most important parameters that should be estimated
reasonably. Here, the general strategy for estimating
these parameters is to use the recommendation rela-
tions or values of the modd developer and in cases
that no recommendation has been represented by the
developers, the default value proposed by the
Kaklamanos et al. [42] is used. Kaklamanos e al.
[42] proposed some empirical relation in term of
source, distance, and site parameters for estimation
of the unknown parameters, when implementing
the NGA mode s in engineering practice. It should be
noticed that Jahanandish et al. [43] developed a
correlation between Z , and V, based on the
randomly generated profiles.

The last group of GMPEs modd is deveoped
based on the data from Japan. Zhao et al. [37] present
a GMPE modd for shallow crust earthquakes in
Japan. In their modd, the site effect is considered
by a dummy variable for different soil classes. The
relation of Ketal06 is other model developed based
on the Japan database. This relation has simple
functional form. In that relation, the style of faulting
isnot used asamode predictor. Zafarani and Farhadi
[44] show that these two Japanese relationships
have a good performance for small to moderate
earthquakes of Iran.

5. Ranking of Candidate GM PEs

In this study, the candidate models are ranked
based on the three approaches of the LH, LLH and
EDR and the order of ranking by each approach will
be compared. This analysis is performed for the
Peak Ground Accderation (PGA) and six periods of
0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 second. As the first
ranking procedure, the LH is adopted. As it is
discussed, this method uses the normalized residual
and the LH values for assessing the suitability of a
candidate model. The result of this approach can be
evaluated by the visual inspection or a quantitative
approach based on the classification scheme pre-
sented by Scherbaum et al. [4]. In Figure (4), the
results of the ranking procedure for two distinct
seismotectonic regions based on the classification of
Scherbaum et al. [4] is depicted. Detailed statistical
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measurements including the median of LH, both
central tendency parameter and the standard
deviation of the normalized residual used in the
classification procedure are presented in the attached
electronic file. To provide an overall index for
evaluating the performance of GMPEsin all periods,
ascoring procedureis adopted in which amode with

Kala-etal (2015)

Rank A
RankB | - - - _ _________________
Rank CAAA —A— —A — —Ac
Rank D .
0 0.5 1 1.5 2
Rank A Akkar-Cagnan (2010)
an .
RankB[ - ~~~7- -~ .= —A—
RankC[ J&=X—4&X "~~~ -~~~ """"""""°=°-~-
Rank Dy 0.5 1 15 2
Akkar-Bommer (2010)
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Chiou-Youngs (2014)
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Zhao-etal (2006)
Rank A
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Rank — A —A A
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rank A to D in each period given a score equal t0 4.0
to 1.0. By summation of the scoresin all periods, the
performance of GMPEs can be evaluated. It should
be mentioned in this scoring procedure that the score
of PGA that is not covered by therdation of Getal09
and 114 is excluded. In Table (2), the final order of
ranking based on the LH approach is presented. As
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Figure 4. Performance of the candidate GMPEs based on the LH ranking procedure in a) Zagros region b) Alborz and central Iran.
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shown, the general performance of GMPESs in the
Alborz and Central regionis much better than Zagros
that is originated from the discrepancies of the
seismotectonics features in those regions. Interest-
ingly, in both regions, the relation of 114 shows good
performance and the relation of CB14 and BSA14
arethe worst models. It is worth noting that therela-
tion of 114, which shows a good performance based
on the LH ranking procedure is the simplest mode
among the NGA-West2. Generally, applying the
simplefunctional formof GMPEswill culminateina
higher value of aleatory uncertainty. This means
that the devel oper rather than incorporating the more
complicated parameters in their modds (due to the
lack of information or any other reason) scarify the
aleatory uncertainty. In some cases, this higher
values of uncertainty in ranking procedure (like the
LH which all aspect of a modd performance and
accuracy evaluated in an overall index) may result
in an inappropriate ranking. Typical example of this
issueistherdation of Getal09, whichisranked among
the top models in both regions while the rdiability of
top rank of Getal 09 should be analyzed separatdy by
consideration of bias, standard deviation, and other
parameters. In Figures (5) to (7), the distribution of
total, intra-event and inter-event residuals of can-
didate GMPEs in the Zagros region, and Alborz and
central Iran in periods of T=0.0, 0.5 and 1.0 second
are illustrated. As depicted, in some candidate
GMPEs such as Ketal06 and Zetal 06, the residuals
have uniform distribution around zero baseline while
in some other modds, the residuals trend to deviate
from zero base line. Interestingly, in AC10 which
shows a good performance based onthe LH criteria,
their corresponding residuals show deviation from
zero base line. This issue points out the weakness of

Table 2. The final ranking of candidate GMPEs in the two distinct

the LH criteria in revealing bias. In LH approach,
the overall goodness of fit of a modd is assessed
in lumped manner. As a result, the error of different
components can be compensated through the norma-
lizing residuals. In Figures (8) to (10), thedistribution
of the estimated values of GM PEs and the observed
datawith V, greater than 500 (m/s) in periods of T
= 0.0, 0.5 and 1.0 seconds are presented.

TheLLH isused as another approach for ranking
of GMPEs. This method that is proposed by
Scherbaum et al. [5] uses the information theory for
ranking of models. Asit is discussed in that ranking
procedure, a lower value of LLH indicates the
better modd. In Figure (11), the LLH values of all
candidate models in discrete periods for Zagros as
well as Alborz and Central Iran are depicted. The
average of the LLH values in different periods,
except the PGA that is not covered by the reation
of Getal09 and 114, is used as anindex for the overall
performance of GMPEsfor all periods. In Table (3),
the final ranking of GMPE models based on the
average of LLH valuesin all periods for two distinct
seismotectonic regions is presented. By comparing
thefinal ranking (Tables 2 and 3), which are obtained
based on the LH and LLH, it can be observed that
there is a general agreement between the orders of
rankings. In both approaches the top five modes in
two seismotectonic regions are approximately the
same. According to Scherbaum et al. [5], this
consistency in the ranking order of theLH and LLH
is not surprising due to their corrdation, which is
shown by anillustrative examplein Scherbaum et al.
[5]. In Table (4), the corresponding weights of the
top five GMPE models based on LH and LLH
approaches according to Equation (6) are presented.

Table 3. The final ranking of candidate GMPEs based on the
average of LLH in all periods in different seismotectonic

seismotectonic region. region.

Zagros Score  Alborz and Central Iran Score Zagros LLH Alborz and Central Iran LLH
AC10 15 Zetal06 26 Zetal06 235 Zetal06 1.88
Ketal06 15 Getal09 23 Ketall5 235 Getal09 1.88
Ketall5 14 114 22 Getal09 2.37 ABI10 1.91
114 14 Ketal06 22 Ketal06 2.41 Ketall5 1.95
Zetal06 14 CY14 20 114 2.50 114 1.97
Getal09 12 AB10 19 ASK14 2.51 Ketal06 1.97
ASK14 12 ASK14 19 ACI10 2.60 CY14 1.97
AB10 11 Ketall5 18 CY14 2.60 ASK14 2.01
CY14 11 AC10 17 CB14 2.65 CB14 2.03
CB14 10 CB14 17 ABI10 2.67 AC10 2.08
BSSA14 8 BSSAl4 12 BSA14 2.81 BSA14 2.41
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Figure 5a. Distribution of total, intra-event and inter-event residuals of candidate GMPEs in Zagros in T=0 (sec).
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Alborz-Central Iran
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Figure 5b. Distribution of total, intra-event and inter-event residuals of candidate GMPEs in Alborz and central Iran in T=0 (sec).
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Figure 6a. Distribution of total, intra-event and and inter-event residuals of candidate GMPEs in Zagros in T=0.5 (sec).
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Alborz-Central Iran
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Figure 6b. Distribution of total, intra-event and inter-event residuals of candidate GMPEs in Alborz and central Iran in T=0.5 (sec).
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Figure 7a. Distribution of total, intra-event and and inter-event residuals of candidate GMPEs in Zagros in T=1 (sec).
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Alborz-Central Iran
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Figure 7b. Distribution of total, intra-event and inter-event residuals of candidate GMPEs in Alborz and central Iran in T=1 (sec).
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Figure 8. Distribution of the estimated value of GMPEs and observed data with V_,,>500 (m/s) in Zagros and Alborz and Central
Iran in T=0.0 (sec).
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Figure 9. Distribution of the estimated value of GMPEs and observed data with V_, >500 (m/s) in Zagros and Alborz and Central
Iran in T=0.5 (sec).
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Figure 10. Distribution of the estimated value of GMPEs and observed data with V_, >500 (m/s) in Zagros and Alborz and Central
Iranin T=1.0 (sec).
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Figure 11. The LLH values of candidate GMPEs model in different periods for the Zagros (top) and Alborz and central Iran (bottom).

Table 4. The corresponding weight of the top five GMPEs model
based on LH and LLH values in two different distinct

region.
Zagros Weight Alborz and Central Iran Weight
Ketall5 0.205 Ketall5 0.200
Getal09 0.205 Getal09 0.205
114 0.185 114 0.195
Ketal06 0.200 Ketal06 0.195

Zetal06 0.205 Zetal06 0.205

Although the approach of LLH is a robust
approach for ranking of GMPEs, similar to the LH
method, this procedure provides an overall sense
about the performance of mode and in some cases
this method may suffer from inconsistent handling
of the aleatory uncertainty associated with GM PEs.
As it is discussed in the former section, between
two models with similar median value, the LLH
approach favors the model with higher value of
uncertainty (see Kale and Akkar, [11]). Evenly, in
this approach, the bias in the median of predicted
value of GMPE and the abserved is obscured by the
normalizing scheme.

The EDR approach is used as the last procedure
for ranking of GMPESs. Unlikethe LLH value, which
an overall performance of the modd is presented by
an index, in EDR method, the two main features of
GMPEs, i.e theground motion variability and the bias
between the median of the mode and observed is
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considered separately in ranking. Based on the
purpose of the seismic hazard study, a specific index
can be considered in ranking of GMPEs. For in-
stance, when the purpose of PSHA is providing
thesaismicload in very long return periods, theMDE
index that concerns with aleatory uncertainty should
be considered. In Figure (12), the performance of
candidate models in different periods based on the
indices of MDE, x and EDR intwo distinct regionsis
depicted. In Table (5), the final ranking of candidate
models based on each index obtained by averaging
in al period except PGA (i.e. T=0) is presented. As
shown, based on each index, the order of ranking
shows some differences. Asa casein point, inAlborz
and Central Iran region based on the index of MDE
that stands for the aleatory uncertainty, the top five
models are Getal09, CB14, Ketal15, ASK14 and
CY 14, while based on the k index that stands for the
bias between the model predictive and observed
value, thetop five modds are CY 14, BSA14, AC10,
AB14 and Ketal06. When the combination of these
indices are considered, thetop fivemodelsare CB14,
CY14, BSA14, Ketal15 and ASK14. In Table (6),
the corresponding weights of the top five GMPE
models based on EDR approach by implementing
Equation (6) in which the LLH values are replaced
by EDR values is presented.

By comparing the order of ranking based on the
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Figure 12. Performance of GMPEs based on the indices of MDE, k and EDR in different periods.

Table 5. The final ranking of candidate GMPEs based on the different indices in different seismotectonic regions.

Zagros Region Alborz and Central Iran
MDE Vi EDR MDE Vi EDR
CB14 1.173 1.213 1.424 CB14 1.154 1.141 1.314
BSAI14 1.199 1.196 1.434 CY14 1.181 1.114 1.316
CY14 1.219 1.216 1.481 BSAI14 1.189 1.116 1.327
AB10 1.214 1.219 1.483 Ketall5 1.161 1.160 1.346
ASK14 1.201 1.250 1.504 ASK14 1.176 1.149 1.351
Zetal06 1.187 1.287 1.531 Zetal06 1.181 1.147 1.353
Ketall5 1.190 1.301 1.549 AB10 1.183 1.157 1.367
Getal09 1.169 1.367 1.599 114 1.189 1.151 1.370
114 1.240 1.293 1.604 Getal09 1.140 1.256 1.423
ACI10 1.354 1.230 1.673 Ketal06 1.264 1.147 1.453
Ketal06 1.314 1.320 1.737 ACI10 1.303 1.126 1.467

Table 6. The corresponding weight of the top five GMPEs model based EDR values in two different distinct region.

Zagros Weight  Alborz and Central Iran Weight

CB14 0.210 CB14 0.200
BSAl4 0.210 BSAl4 0.205
CY14 0.200 CY14 0.205
ASK14 0.200 ASK14 0.195
Zetal06 0.190 Zetal06 0.195
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LH and LLH with EDR approach, obvious
differences are tangible. The CB14 that is among
the worst models based on the ranking procedure of
LH and LLH is the best modd based on the EDR
ranking. This contradiction in the ranking order is
originated from the conceptual differences of each
procedure. While in the LH and LLH, only the
overall performance of the predictive model is
assessed in EDR, the uncertainty and the bias of
model contribute individually in the ranking of
GMPEs. By this separation in EDR, some strengths
and weaknesses of a model, which cannot be
captured by the LH and LLH approach can be seen.
As acasein point, the EDR analysis shows that the
bias in the observed and median estimated value is
more pronounced than the variability of GMPEs.
Especially, this issue is more tangible in the Zagros
region where the k values are much higher.

It is worth noting that all the above-mentioned
explanations do not mean that a ranking procedure
is superior to the other methods. In fact, al these
ranking approaches are a guidance tool for experts
to establish a suitable ground motion logic tree. The
agreement of theranking order of various approaches
may only provide a more confidence and defensible
logic tree, while the contradiction order of ranking
by different approaches only warns the experts for
further studies and sdecting the most appropriate
models based on the abject of the seismic hazard
analysis.

6. Conclusion

In this study, the suitability of a set of local,
regional and global GMPEs models based on the
three approaches of LH, LLH and EDR for two
distinct seismotectonic regions of Iran have been
assessed. The likelihood and average log likelihood
approaches (LH and LLH) are applied as the first
and the second approaches for ranking of GMPEs.
Analysis shows general compatibility between the
order of ranking in both approaches, which based on
the corrdation of LH and LLH (Scherbaum et al.,
[5]) this consistency is not surprising. In both
approaches, the local, regional, and global models
with simpler functional form are ranked among the
top modds. However, it should be noted that in LH
and LLH methods, the overall performance of a
predictive modd is examined by normalized residual
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in term of an index, that is the bias and aleatory
uncertainty and other aspects of a model are
evaluated in a lumped manner. This fact may result
in inappropriate order of ranking. If one characteris-
tic of the predictive model is in error, the effect
could be obscured through the compensating errors
in the analysis [45]. Similar issue was pointed by
Kale and Akkar [11] that in cases where two models
yield similar median values, the LLH method favors
the model with higher value of standard deviation
that is a conservative view and in cases that the
purpose of the PSHA has a very long return period
may result in unrealistic values.

TheEuclidian Distance approach (EDR) proposed
by Kale and Akkar [11] used as the last ranking
procedure for examining the performance of can-
didate GMPEs. In that approach, the two main
features of a predictive model, i.e. the aleatory
uncertainty and thetrend of the median and observed
data are considered separately by different indices.
The order of ranking in that procedure shows sig-
nificant differences from the LH and LLH.

Themain reason to this contradictionis originated
from their conceptual differences. In the approaches
like LH and LLH, the overal performance of the
model is assessed in an index and the individual
effects of other parameters are not examined. A
Typical exampleinthisregardistherdation of Getal09
that, based on the LH and LLH, shows a good
performance while based on the EDR approach are
ranked among the worst models. In the EDR
approach, the Getal09 shows a high value of bias
between the observed seismicity and the predictive
value of GMPE which thisissuein LH and LLH that
assess all aspects of GMPE is faded through the
analysis.

In conclusion, it should be emphasized that all
testing approaches for evaluation of candidate
models are only a guidancetool for expertsto build a
more defensible logic tree to select the most appro-
priate modd with consideration of the purpose of
seismic hazard analysis.
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