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ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

Dynamic response of a multi-storey symmetrical and asymmetrical space frame
structures having six degrees of freedom (three translations along x, y, z-axes and
three rotations about these axes) at each node, with multiple tuned mass dampers
(MTMD) on its top is obtained. Each tuned mass damper (TMD) is modeled using a
two-noded element having two translational degrees of freedom at each node. MTMD
with uniformly distributed frequencies is considered for this purpose. The effective-
ness of MTMD in suppressing the structural response is determined by comparing
the response of corresponding structure without MTMD. It is found that the MTMD
can be used effectively to suppress the acceleration, base shear, bending moment,
translational and rotational responses of the symmetrical and asymmetrical struc-
tures. The effect of important parameters on the effectiveness of the MTMD is also
studied. The parameters include the fundamental characteristics of the MTMD such
as damping, mass ratio, total number of MTMD, tuning frequency ratio, frequency
spacing of the dampers and structural damping. It is shown that these parameters
have considerable influence on the effectiveness of the MTMD in reducing the
dynamic response of the structure.
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1. Introduction

     In Vibration control of structures, the tuned
mass damper (TMD) has been accepted as an
effective passive control device to attenuate unde-
sirable vibration of a structure [1-2]. The TMD
consists of a mass, a spring and a viscous damper
attached to the structure. The natural frequency of
the damper is tuned to a frequency near to the
natural frequency of the structure. The vibration of
the structure causes the TMD to vibrate in resonance;
as a result, the vibration energy is dissipated through
the damping of the TMD. The main disadvantage of
a single TMD is its sensitivity of the effectiveness
to the error in the natural frequency of the structure
and/or that in the damping ratio of the TMD. The
effectiveness of a tuned mass damper is reduced
significantly by mistuning or the off-optimum
damping in TMD. As a result, the use of more than
one tuned mass damper with different dynamic

characteristics has been proposed in order to improve
the effectiveness. Multiple tuned mass dampers
with distributed natural frequencies were proposed
by Xu and Igusa [3-4] and also studied by Yamaguchi
and Harnpornchai [5], Jangid and Datta [6], Abe and
Fujino [7], Abe and Igusa [8], Park and Reed [9],
Chunxiang [10-11] and Sadek et al [12]. It was shown
that MTMD is more effective for vibration control
as compared to single TMD.  Almost all of these
studies considered the controlled structure as a single
degree of freedom (SDOF) system with its funda-
mental modal properties to design the TMD and
MTMD. However, a real building usually possesses
a large number of degrees of freedom and is actually
asymmetric to some degree even with a nominally
symmetric plan. It will undergo lateral as well as
torsional vibrations simultaneously under purely
translational excitations. Thus, the simplified SDOF
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system, which ignores the structural lateral-torsional
coupling and TMD effect on different modes, could
overestimate the control effectiveness of TMD [13].
Consequently, the controllers have to be designed
through taking into account the effect of transverse-
torsional coupled vibration modes in such cases.
Examination of the TMD and MTMD for structures,
which possess transverse-torsional coupled vibration
modes, has already been recently performed by
Jangid and dutta [13], Chunxiang and Weilan [14],
Lin et al [15], Singh et al [16] and  Pansare and
Jangid [17].

Jangid and dutta [13], Pansare and Jangid [17]
and Chunxiang and Weilan [14] have studied the
response control of two degrees of freedom (one
translation and one rotation) torsional systems by a
cluster of MTMD.  Lin et al [15] studied the response
reduction of a multi-storey torsional building (with
two translations and one rotation at each floor)
system with one and two tuned mass dampers. Singh
et al [16] studied the response control of a multi-
storey tensional building (with two translations and
one rotation at each floor) system with four tuned
mass dampers, placed along two orthogonal direc-
tions in pairs.

The formulation of mathematical model of the
structure is the most critical step in any seismic
analysis, because how well the computed response
agrees with the actual response of a structure during
an earthquake depends primarily on the quality of
the structural idealization. The quality of the struc-
tural idealization can be improved by more realistic
idealizations of buildings that consider beam flexure,
all translations along x, y, and z axes and all rota-
tions about these axes. In the present paper, the
effectiveness of MTMD in controlling the response
of a symmetrical and asymmetrical multi-storey
space frame structures having six degrees of free-
dom (three translations along x, y, and z axes and
three rotations about these axes) at each node are
investigated. The total degrees of freedom of the
controlled structure (with MTMD) in this idealization
are (6 × N) + (2 × n), where N is the number of nodes
and n is total number of MTMD. The objectives of
the study are (i) to study the dynamic behaviour of
a multi-storey symmetrical and asymmetrical space
frame structures having six degrees of freedom at
each  node, with MTMD, (ii) to distinguish between
the response characteristics of the structure with

MTMD and  single TMD, and (iii) to study the effect
of important parameters on the effectiveness of
MTMD.

2. Analysis

The structure is divided into a number of elements
consisting of beams and columns. The beams and
columns are modeled using two noded frame ele-
ments with six degrees of freedom at each node,
i.e. three translations along x, y, and z axes and
three rotations about these axes. For each element,
the stiffness matrix, consistent mass matrix, and
transformation matrix are obtained. The mass
matrix and the stiffness matrix of each element from
local direction are transformed to global direction
as proposed by Paz [18]. The mass matrix and the
stiffness matrix of each element are assembled by
direct stiffness method to get the overall mass ma-
trix, M, and overall stiffness matrix, K, for the entire
structure. Knowing the overall mass matrix, M, and
overall stiffness matrix, K, the frequencies for the
structure are obtained using simultaneous iteration
method. The damping matrix for structure is obtained
using Rayleigh’s equation, C = α M + β K, where α
and β are the constants. These constants can be
determined easily if the damping ratio for each
mode is known. The overall dynamic equation of
equilibrium for the entire structure can be expressed
in matrix notations as:

)(tfKuuCuM =++ &&&                                          (1)

where M, C and K are the overall mass, damping,
and stiffness matrices of size 6N × 6N, where N is
the number of nodes. u u &&& ,  and u are the relative
acceleration, velocity and displacement vectors with
respect to ground and f (t) is the nodal load vector.

...,,,,,,,,,,,,, 222222111111      wv u    wv uu                     zyxzyx θθθθθθ=
.,,,,,           zNyNxNNNN     wv u θθθ

The nodal load vector due to earthquake is
obtained using the Eq. (2):

)()( tuIMtf g  &&−=                                               (2)

where M is the overall mass matrix, I is the influence
vector of size 6N ×  1, and )(tug&&  is the ground
acceleration. The resulting equation of dynamic
equilibrium is solved using Newmark method
to obtain the displacements and acceleration at
the nodes as explained in Chopra [19]. Owing to
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its unconditional stability, the constant average
accel-eration scheme (with β  = 1/4 and γ = 1/2) is
adopted.

2.1. Modeling of Multiple Tuned Mass Dampers

Each tuned mass damper (TMD) is modeled
using a two-noded element with two translational
degrees of freedom (x and z direction) at each node.
The natural frequencies of the MTMD are uniformly
distributed around their average natural  frequency.
The natural frequency jω  (i.e. )/ jjj mk=ω  of
the jth TMD is expressed as:
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where n is the total number of MTMD, Tω  is the
average frequency of all the MTMD, and β is the
frequency range parameter of the MTMD.
     As suggested by Xu and Igusa [3], the manufac-
turing of MTMD with uniform stiffness is simpler
than those with varying stiffness. In this study, the
distribution of natural frequencies of the MTMD is
achieved by keeping the stiffness constant (i.e., with
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The mass and the damping constant of the jth

TMD are expressed as:
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where T ζ  is the damping ratio which is kept con-
stant for all the MTMD.

The ratio of total mass of MTMD to the total
mass of the structure is defined as the mass ratio, i.e.
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The constant stiffness required for each TMD
can be evaluated as:
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The average frequency of MTMD corresponds
only to the lateral mode of vibration. In case of an
asymmetrical building, the translations in x and z
directions have different dominant modes. Keeping
them in view, two different tuning frequency ratios
are considered in the study, namely;
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where 1sω  and 2sω  are the natural frequency of
lateral vibration of the structure corresponding to
the dominant mode in x and z direction respectively.

The natural frequency, stiffness, damping and
mass parameters of the dampers in x-direction are
denoted by .and,,, jxjxTxjx m c k  ω  Similar parameters
for the dampers along the z-direction are denoted
by .and,,, jzjzTzjz m c k  ω  It is to be noted that the
stiffness and damping parameters of the jth TMD
in x and z directions are different whereas mass
parameter of the jth TMD in x and z directions are
the same ).( jjzjx mmm ==

The stiffness, damping and mass matrices of
each TMD is expressed as:
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In case of a symmetrical structure, the transla-
tions in x and z directions have identical dominant
modes ).( 21 ss ω=ω  Consequently, the natural fre-
quency, stiffness, damping and mass parameters
of jth TMD in x and z directions are the same =ω jx(

=======ω=ω jzjxjjzjxTTzTxjjz mm ccckkk ;;;
).jm
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The stiffness, damping and mass matrices of
each TMD are added to the overall stiffness matrix,
overall damping matrix and overall mass matrix
of the structure at corresponding global degrees of
freedom.

2.2. Determination of Member Forces

The displacement obtained at each node is as-
signed to each member. The forces in each member
are then obtained by multiplying the element
stiffness matrix with the nodal displacement vector.

3. Dynamic Response of a Multi-Storey Sym-
metrical Space Frame Structure with and
without MTMD

Figure (1a) shows a symmetrical four-storey
space frame structure with MTMD on its top. Since
the uncontrolled structure (without MTMD) is sym-
metrical, the natural frequency of lateral vibration of
the structure corresponding to the dominant mode in
x and z directions are identical, i.e., =ω=ω=ω sss 21

8.376 rad/sec. The MTMD with uniformly distributed
frequencies are placed on the top of four-storey space
frame structure as shown in Figure (1b). Since the
mass parameter of each TMD is not the same, the
controlled (with MTMD) structure is an asymmetri-
cal one. The structure is subjected to bi-directional
(x and z directions) harmonic ground excitation equal
to )(0 tinsa     ω  (where 0a  is equal to 20% of accelera-
tion due to gravity and ω is the excitation  frequency).
The horizontal displacements, rotations, absolute
acceleration at nodes and the base shear, bending
moment in the member are computed. The damping
ratio of structure is taken as 2% of critical for all
modes, damping ratio of MTMD is taken as 1% of
critical, mass ratio is taken as 1%, the total number
of MTMD is taken as 10, the frequency range
parameter of the MTMD is taken as 0.2, and tuning
frequency ratio ( f = f1 = f2) is taken as unity. Figure
(2a) shows the variation of maximum horizontal
displacement and maximum rotations against the
frequency ratio )/( sωω  for a structure with and
without MTMD. The response of the uncontrolled
structure is sharply peaked, and the peak is centered
around the fundamental natural frequency of the
uncontrolled structure. This peak is due to resonating
effect. Since the uncontrolled structure is symmetri-
cal, the response at node 1 and node 2 are identical.
Further, it can also be seen from the Figure (2a) that
there is a significant reduction in the peak value of

Figure 1a. Four-storey space frame structure with MTMD on
its top.

Figure 1b. The placement of MTMD on the top of the structure.

the horizontal displacements and rotations of the
structure due to MTMD. Hence the MTMD can be
used effectively to suppress the translational and
rotational responses of the structure. It is also found
that, in the frequency range, ,3.1/8.0 >ωω>  the
response curves of structure with and without
MTMD are almost the same; this indicates that
MTMD are effective only near the fundamental
natural frequency of structure. Thus, the effective-
ness of MTMD is dependent on the frequency
characteristics of ground motion.

Figure (2b) shows the variation of maximum
absolute acceleration, maximum base shear and
maximum bending moment for the member along
member y-axis (My) and member z-axis (Mz)
against the frequency ratio. It can be observed from
Figure (2b) that there is a significant reduction in
the peak value of the acceleration, base shear and
bending moment of the structure due to MTMD.
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Figure 2a. Variation of translational and rotational response of the structure against frequency ratio.

Figure 2b. Variation of acceleration, base shear and bending moment of structure against frequency ratio.
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Figure 2b. (Continue)

Hence the MTMD can be used effectively to control
the acceleration, base shear and bending moment of
a structure. This also indicates that the increase in
mass due to MTMD will not affect the stability of
the structure.

4. Parametric Study

The effectiveness of MTMD in suppressing the
dynamic response of a four-storey symmetrical
space frame structure shown in Figure (1a) is ana-
lyzed  under the important parametric variations. The
parameters include: total number of MTMD (n),
damping ratio of MTMD ),( Tζ  tuning frequency
ratio (f = f1 = f2), frequency range parameter of
MTMD (β) and structural damping ).( Sζ  Mass ratio
is taken as 1% [5]. The structure is subjected to
harmonic ground excitation (in x-direction) equal to

)(0 tnsia     ω  (where 0a  is equal to 20% of accelera-
tion due to gravity and ω is the excitation frequency).

The response quantity of interest is the RMS
horizontal displacement of structure. The area under
the maximum horizontal displacement curve yields
the mean square response (RMS). In order to study
the effectiveness of MTMD, it is convenient to
express the response in terms of the ratio rather than
plotting their values. For this purpose, the response
ratio is defined as:

that the RMS horizontal displacement of the
structure with MTMD has been reduced in com-
parison to the response without MTMD.

4.1. Effect of Total Number of MTMD

     Figure (3) shows the variation of response ratio
against the total number of MTMD for β = 0.1, 0.2,
0.25, 0.3 and 0.4. The damping ratio of the structure
is taken as 2% of critical. The damping ratio of
each TMD is taken as 1% and the tuning frequency
ratio is in unity for all cases. The response ratio for
the structure studied is less than unity, indicates
that the single TMD and MTMD are effective in
reducing the response of the structure. As the total
number of MTMD increases the effectiveness of
MTMD in suppressing dynamic response of the
structure increases. Further, it can also be seen from
the Figure (3) that the MTMD is more effective
than single TMD. However, by increase in the
number of TMD beyond a certain value (n = 10), the
effectiveness of MTMD remains almost invariant.

4.2. Effect of Damping Ratio of MTMD

In Figure (4), the variation of response ratio is
plotted against the damping ratio of MTMD for
n = 1, 4, 8 and 12. The frequency ratio ( f ) and fre-
quency range parameter (β) of the MTMD are taken
as 1 and 0.2, respectively. The damping ratio of the
structure is taken as 2% of critical. At lower
damping ),07.0( <ζT  MTMD is more effective in
controlling the response than a single TMD. Further,
the MTMD is significantly less sensitive than the
single TMD at low value of damping ratio. However,
at higher damping, the response ratio increases with

The response ratio is an index of the performance
of MTMD. The ratio being less than unity implies

RMS horizontal displacement of 
structure with MTMD 

Response ratio =  
 RMS horizontal displacement of 

corresponding structure  
without MTMD 



JSEE / Vol. 13, No. 3 & 4, 2011 173

Multiple Tuned Mass Dampers for Response Control of Multi-Storey Space Frame Structure

Figure 3. Variation of response ratio against total number of
MTMD.

Figure 4. Variation of response ratio against damping ratio of
MTMD.

the increase in damping and at node 1, the response
ratio is nearly the same for single TMD and MTMD
whereas at node 2, the response ratio for MTMD is
more than that of single TMD. This implies that at
higher damping, the relative advantage of MTMD

(compared to single TMD) decreases. The optimum
value of damping in MTMD is sufficiently lower
than that for a single TMD.

4.3. Effect of Frequency Range Parameter

In Figure (5), the variation of response ratio is
plotted against the frequency range parameter (β)
of the MTMD for damping ratio of MTMD equal to
1%, 2% and 5%. The damping ratio of the structure
is taken as 2% of critical. The total number of
MTMD is taken as 8 and the tuning frequency ratio
is equal to unity. Figure (5) shows that the frequency
range parameter significantly influences the effec-
tiveness of MTMD. There exists an optimum value
of frequency range parameter which provides
maximum effectiveness of MTMD for a given
damping ratio.

4.4. Effect of Tuning Frequency Ratio

     Figure (6), shows the variation of response ratio
with the tuning frequency ratio ( f ) for total number
of MTMD equal to 1, 4, 8 and 12. The damping ratio
of the structure is taken as 2% of critical. The
frequency range parameter of the MTMD is taken
as 0.2. The damping ratio of MTMD is taken as
1%. Figure (6) shows that there exists an optimum
value of tuning frequency ratio at which the response

Figure 5. Variation of response ratio against frequency range
of MTMD.



JSEE / Vol. 13, No. 3 & 4, 2011174

K.K.  Shetty and Krishnamoorthy

Figure 6. Variation of response ratio against tuning frequency
ratio for total number of MTMD.

Figure 7. Variation of response ratio against tuning frequency
ratio for various values of structural damping.

Table 1. Material and geometric properties of asymmetrical four-storey space frame structure.

of the structure becomes minimum for both single
TMD and MTMD. The optimum value of the tuning
frequency ratio occurs in the vicinity of unity.

4.5. Effect of Structural Damping

In Figure (7), the variation of response ratio is
plotted against the tuning frequency ratio ( f ) for
damping ratio of structure equal to 2%, 3% and 5%.
The total number of MTMD is taken as 8, the
frequency range parameter of the MTMD is taken
as 0.2 and the damping ratio of MTMD is taken as
1%. The response ratio increases with an increase
in structural damping. This indicates that an increase
in the damping ratio of the structure decreases the
effectiveness of MTMD.

5. Dynamic Response of a Multi-Storey Asym-
metrical Space Frame Structure with and
without MTMD

The response of a multi-storey asymmetrical
space frame structure with and without MTMD

subjected to bi-directional (x and z directions)
harmonic ground excitation equal to a 0sin  (ωt)
(where a0 is equal to 20% of acceleration due to
gravity and ω is the excitation frequency) and seis-
mic ground motions are studied. The two earthquake
ground motions considered for the study are Mexico
and El Centro earthquakes. The material and geo-
metric properties of the uncontrolled asymmetrical
four storey space frame structure considered for the
study are shown in Table (1). The natural frequency
of lateral vibration of the structure corresponding to
the dominant mode in x and z directions are ωs1=
8.376rad/sec and ωs2 = 8.737rad/sec respectively.
The damping ratio of structure is taken as 2% of
critical for all modes, damping ratio of MTMD is
taken as 1% of critical, mass ratio is taken as 1%,
the total number of MTMD is taken as 10, the
frequency range parameter of the MTMD is taken
as 0.2 and tuning frequency ratio (f = f1 = f2) is taken
as unity. Figure (8a) and (8b) shows the variation of

Time Period of  
the Structure 

(sec) 

Mass on  
Each Beam 

 (kN-sec2/m2) 
 

b  
(m) 

d  
(m) 

H 
(m) 

Size of  
Beam  
(m) 

Size of Column  
 1, 5, 9, 13, 
4, 8, 12, 16  

(m) 

Size of Column  
2, 6, 10, 14, 
3, 7, 11, 15 

(m) 

Modulus of  
Elasticity  
( kN/m2 ) 

0.75  2.9 6 6 3.3 0.3 × 0.6 0.4 × 0.4 0.6 × 0.6 2.24 × 107  
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Figure 8a. Variation of translational and rotational responses of asymmetrical structure against frequency ratio.

Figure 8b. Variation of acceleration, base shear and bending moment of asymmetrical structure against frequency ratio.
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maximum response against the frequency ratio
1 (ω/ωs1) and frequency ratio 2 (ω/ωs2) for a structure
with and without MTMD subjected to harmonic
ground excitation. The response of structure with
MTMD is found to be less in comparison to the
corresponding response without MTMD, implying
that the MTMD can be used effectively to suppress
the acceleration, base shear, bending moment, trans-
lational and rotational responses of the structure.

The ground acceleration records used for the
numerical simulations are:
i) Mexico earthquake (Galeta de campos station,

1985),
ii) El Centro earthquake (Imperial Valley, 1940) and
iii) Northridge earthquake (Newhall, 1994).

Figure 9. Response of asymmetrical structure subjected to Mexico earthquake ground motion.

The peak ground accelerations (PGA) of these
earthquakes are 1.4068 m/s2, 3.13 m/s2, and 5.72 m/s2

respectively. Figure (9) shows the variation of
horizontal displacement at node 1 (x-dir.), rotation
at node 1 (θY), base shear in column 1 (x-dir.) and
bending moment in column 1 (MZ) against the time
for a structure with and without MTMD subjected
to Mexico earthquake ground motion. The peak
response values of a structure subjected to Mexico,
El Centro and Northridge earthquake ground motions
are shown in Table (2). The response of structure
with MTMD is found to be less in comparison to the
corresponding response without MTMD, implying
that the MTMD can be used effectively to suppress
the seismic response of a structure.
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6. Conclusions

The performance of MTMD for controlling the
dynamic response of a multi-storey symmetrical
and asymmetrical space frame structures having
six degrees of freedom at each node is investigated.
The responses of the structure with MTMD are
compared with those of the same structure without
MTMD. The effect of important parameters on the
effectiveness of the MTMD is also studied. The
results of the study lead to the following conclusions:
v MTMD can be used effectively to suppress the

acceleration, base shear, bending moment,
translational and rotational responses of the
symmetrical and asymmetrical structure.

v As the total number of MTMD increases the
effectiveness of MTMD in suppressing dynamic
response of the structure increases. However,
with an increase in the number of TMD beyond
a certain value (n  =  10), the effectiveness of
MTMD remains almost invariant.

Mexico Earthquake El Centro Earthquake Northridge Earthquake 
 Without 

MTMD 
With  

MTMD 
Without 
MTMD 

With  
MTMD 

Without 
MTMD 

With 
MTMD 

Node 1 35.853 28.628 129.8603 118.66 197.436 169.647 

Node 3 
x -Direction 

20.106 16.9384 63.6014 58.75 125.594 103.03 

Node 1 33.5133 22.1092 92.966 81.159 134.476 108.028 

Horizontal 
Displacement 

(mm) 

Node 3 
z-Direction 

41.189 27.723 118.95 108.207 180.33 156.78 

θX 0.000744 0.000483 0.001773 0.00164 0.00297 0.00262 

θY 0.003799 0.003067 0.011173 0.01027 0.01811 0.0171 Node 1 

θZ 0.000778 0.000683 0.00255 0.00233 0.00521 0.00484 

θX 0.00195 0.001283 0.005176 0.004721 0.00842 0.00685 

θY 0.003097 0.00268 0.009344 0.007711 0.01658 0.0148 

Rotation 
(rad) 

Node 3 

θZ 0.000956 0.000759 0.002817 0.00261 0.00574 0.0051 

Node 1 3.422 2.8102 11.595 10.472 23.563 20.189 

Node 3 
x-Direction 

2.036 1.784 6.60196 5.997 10.94 9.606 

Node 1 3.3506 2.5231 8.266 7.82 15.383 13.99 

Acceleration 
(m/s2) 

Node 3 
z-Direction 

4.083 3.193 11.814 11.028 16.749 15.419 

Column 1 93.441 75.5384 324.374 288.609 512.503 473.1 

Column 3 
x-Direction 

94.935 88.554 313.352 290.13 554.688 474.807 

Column 1 68.385 45.974 179.99 161.06 273.413 238.73 

Base shear 
(kN) 

Column 3 
z-Direction 

172.929 119.258 450.965 405.99 694.86 625.07 

Column 1 184.1524 141.978 643.681 589.98 1007.15 926.6 

Column 3 
MZ 

272.132 242.7597 885.042 823.1 1572.9 1344.3 

Column 1 135.991 91.045 359.197 321.126 544.45 470.44 

Bending Moment 
(kN-m) 

Column 3 
MY 

495.671 334.45 1306.43 1170.172 1988.6 1730.7 

Table 2. Peak response values of an asymmetrical structure subjected to real Earthquake ground motion.

v The optimum value of damping in MTMD is
sufficiently lower than that for a single TMD.

v There exists an optimum value of frequency
range parameter which provides maximum effec-
tiveness of MTMD for a given damping ratio.

v The optimum value of the tuning frequency ratio
occurs in the vicinity of unity.

v Increase in the damping ratio of the structure
decreases the MTMD effectiveness.

v The effectiveness of MTMD is dependent on the
frequency characteristics of ground motion.
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