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ABSTRACT: In recent years computational simulation has taken an
increased engineering importance in the seismic evaluation of critical
structures. However, accurate nonlinear analyses of large suspension
bridges continues to present earthquake engineers with a technically and
computationally challenging problem. Application of general purpose
nonlinear finite element software often results in computational models
which are intractably large and computationally prohibitive. There are
also specialized aspects to suspension bridges modeling, such as appro-
priate gravity initialization, that are not easily solved with general
purpose computer programs. To address the simulation model challenges,
a reduced order computational model has recently been developed for
efficient nonlinear time history analysis. The model employs special
element technologies tailored to suspension bridge applications and
provides a hybrid implicit-explicit solution algorithm which can perform
appropriate gravity initialization and adeptly handle extreme nonlinearties
such as dynamic impact associated with pounding between bridge seg-
ments, foundation rocking or member buckling, and provide a framework
which is readily migrated to a massively parallel compute environment.
The computational model is described and a sample application is
presented for the near-field seismic response of the San Francisco-
Oakland Bay Bridge Western Crossing (USA).

Keywords: Suspension bridge; Nonlinear analysis; E critical Structure;
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1. Introduction

The design and analysis of major structures has becopsthquake ground motions; near-field earthquake ground
increasingly reliant on large-scale computational simulanotions containing long-period ground displacement
tion. Linear simulations have been the mainstay of desigulses and permanent ground displacements; and fluid-
computations, however, as performance based desgfructure interaction between a bridges and the turbulent
procedures become more prevalent, there will be increasgthosphere, are topics for which scientific and engineer-
demand for accurate numerical models capable of simulatg understanding are incomplete. Efficient and accurate
ing nonlinear response and ultimate structural instabilitgimulation models will be essential to studying these
The computational requirements for nonlinear seismmmplex phenomena.
bridge analyses, which include changes in the global model There have been extensive analytical and numerical
geometry, impact between adjacent bridge segments, atddies of the vibrational characteristics of cable supported
material inelasticity, can be prohibitive if general purposkeridges undergoing small amplitude, linear vibrations.
finite element programs are employed. This fact begs fohe early work of Abdel-Ghaffar [1, 2, 3] provided basic
efficient nonlinear computational models which will permitinderstanding of the linear vibratory dynamics of
parametric studies essential to a clear understandingsofspension bridges. Abdel-Ghaffar's work constructed
bridge response and design optimizations. analytical models for the natural vibrations of suspension
In addition to computational difficulties, there continudridges and gave insight on the interactions between
to be phenomenological issues in the analyses of théseers, cables, and deck systems. In a combined simula-
important structures. The effects of spatially varyingion and field observation study, Dumanoglu, Brownjohn,

JSEE: Fall 2000, Vol. 2, No. 419



D.B. McCallen and A. Astaneh-Asl

and Severn [4] utilized two-dimensional and threefor the Golden Gate and Vincent Thomas bridges, and
dimensional linear finite element models to investigate tHéazmy and Abdel-Ghaffar [12, 13] have shown the impor-
natural vibrations of the Fatih Sultan Mehmet suspensitant effect of geometric nonlinearities in cable stayed
bridge (Turkey) and extracted a large number of modes foridges. Consideration of nonlinearities in cable supported
the structure. Dumanoglu et al also performed transigitidges is also beginning to infiltrate engineering practice,
analyses for multiple support earthquake excitationfr example Ingham, Rodriguez and Nadar [14] describe
concluding that variable support motion can leadesign applications of nonlinear analysis in seismic
to significantly larger forces than coherent supporetrofit studies of the Vincent Thomas Bridge (USA).
motions. The objective of the work described in this paper was
The first detailed experimental work on low amplitudethe development of a simple and robust computational
linear suspension bridge vibrations is contained in thgodel for three-dimensional, nonlinear analysis of suspen-
study of Carder [5] in tests performed on the Golden Ga%on bridges. The resulting finite element model accounts
and San Francisco Oakland Bay Bridges (USA) in 1938r nonlinearities due to finite displacements, select
Carder employed a simple “Vibration-meter” consisting onaterial nonlinearities in the bridge members, impact
a vibrating mechanical device recording on a strip dfetween adjacent bridge segments, and potential rocking
moving photographic paper. Carder periodically measurédd uplift of large caisson foundations. The model
natural vibrations of bridge components during th@rovides a framework in which the most complex nonlinear
construction of the bridges. The natural frequencies bghaviors, such as buckling of vintage built-up laced truss
the bridge components were inferred by examinatiofembers, can be readily incorporated. Unique features of
of motion traces on the photographic plates. Cardert§eé model include the element technologies, which are
experimental tools were rudimentary in 1936, however, 4gilored to the construction of a reduced-order model with
discussed in subsequent sections, his experimental res@lf@inimal number of global degrees of freedom; and the
appear to have yielded accurate modal data. Abdel-Ghaftgiization of an explicit time-integration scheme for
and Scanlon [6, 7] performed experimental investigatiorfynamic analyses. The explicit scheme provides a simple
on the Golden Gate Bridge, in which 91 modes were ide@td highly reliable nonlinear time stepping framework for
tified in the range of 0-1tzfor the suspended structure, transient nonlinear analyses, which is especially effective
and 46 modes were identified in the range ob@4r the for numerically capturing strong nonlinearities. The model
towers. The measured lower modes compared favoraWOrporates an implicit based, automated procedure for
with eigenvalues and eigenvectors obtained from a finip@nlinear gravity initialization of the bridge model, which
element model. Brownjohn, Damanoglu, and Severn [gpmputes the correct bridge geometry and initial stress
completed ambient vibration measurements on the Faflgld in the cable and deck trusses for gravity loading.
Sultan Mehmet suspension bridge to identify mods
shapes, frequencies, and modal damping. The observéd
modes correlated well with the lower modes computed frolthe research study motivating the development of the
afinite element model, with increased divergence betwegdmputational model consists of a multidisciplinary
observations and the model results at higher frequenciseismological and engineering case study of the San
Additional observational data is provided in the work oFranciso-Oakland Bay Bridge, see Figure (1). This 8#00
McLamore, Hart, and Stubbs [9] where experimentabng twin steel suspension bridge was built in the early
observations of the ambient vibrations of the Newpont930'sand consists of a double deck system supported by
(USA) and William Preston Lane (USA) suspensiorsteel trusses with laced members. With approximately
bridges identified natural modes of vibration an@80,000 vehicles per day, this structure carries the highest
corresponding modal damping values. traffic volume of any bridge in the world, it is a critical
The existing experimental and modeling studies havegional transportation link and a seismically interesting
generally demonstrated the ability of computationadtructure by virtue of its location in the near-field of two
models to adequately represent the lower natural modesy active earthquake faults. A principal objective of the
associated with small amplitude, linear vibrations. Duengoing investigation is to assess the effects of long
to the complexities and computational difficulties ofperiod, near-field earthquake motions on this spatially
large-scale nonlinear analyses, and a complete absencdisfributed flexible structure, an issue which has taken on
measured response data in the strong motion earthquakessing importance in light of recent observations of the
regime, the effect of nonlinearities on cable bridge responisag period content of near-field records in major earth-
has been investigated to a lesser extent. Abdel-Ghaffgurakes [15,16].
and Rubin [10, 11] demonstrated the nonlinearity associ- This paper describes and demonstraes application of
ated with modal coupling in amplitude dependent frethe computational bridge model which has been devel-
vibrations of suspension bridges with application exampl@ped. The description of the computaitonal model details

Computational Bridge System Model
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Figure 1. Seismological setting and the San Franciso-Oakland Bay Bridge Western Crossing. (a) Bridge location and nearby faults;
(b) Twin suspension structures of the Bay Bridge Western crossing.

reference the application to the Bay Bridge systenconditionally stable with the time step size governed by
however, the soulution algorithms and element technoltiie highest frequency of the simulation model and with
gies described have broader applicability to other cabigneral purpose software this has historically resulted in
supported bridges with appropriate changes in elemeob small a time step and too costly a solation procedure
properties. for long duration dynamic loads (e.g. earthquakes). On the
The bridge model consists of the five basic elementsther hand, the potential advantages of explicit integra-
as shown in Figure (2). A reduced-order deck modeipn are well known for highly nonlinear problems. These
consisting of a composite combination of truss, membrarsjvantages include the basic simplicity and reliability of
and special sway stiffness elements represents the déok algorithm when compared with the most efficient
and stiffening truss system. A finite-rotation fiberquasi-Newton implicit schemes. Explicit integration
bending element is used to represent the bridge towgusovides accuracy and high reliability for large nonlinear
A penalty based node-to-node contact element captusgsuctures when extreme nonlinearities occur and can
potential contact and impact between the deck system amadily handle buckling or contact intensive problems
towers, and a rocking with contact foundation modekhich can significantly hamper convergence or degrade
represents the large caisson foundations including ttiee economy of implicit integration schemes. Another
potential for uplift. A tension-only cable element withmajor advantage of explicit methods, which is becoming
user-defined initial stress represents the bridge cabiere important with the emergence of massively parallel
system. computers, is the ease with which explicit based programs
The philosophy in the development of the model wasan be migrated to a parallel compute environment.
to maintain the greatest possible simplicity in the elemeBixplicit integration is computationally feasible for long
formulations and solution algorithms, and to provide duration problems if the element technologies and
robust algorithm which could handle a multiplicity of strongphysical element sizes in the discretized model do not
nonlinearities. An explicit time integration algorithmresult in prohibitively small time steps. The special
provides the required robustness for highly nonlinealements developed in this study result in manageable
dynamic problems. Explicit integration schemes aréme steps and thus enable the use of explicit integration.
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The nonlinear computational elements and algorithmisawrence Livermore National Laboratory. A complete
developed have been incorporated into the specidéscription, including detailed evaluations of element
purpose finite element progra®USPENDERSt the and software performance, is given in McCallen and

Figure 2. The five elements of the bridge system model. (a) Composite membrane, truss and sway stiffness deck model; (b) Finite
rotation fiber flexure element for the bridge towers; (c) Caisson block with uplift; (d) penalty node-to-node contact for deck
impact; (e)Tension-only two force member with initial stress for cables.
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Astaneh-Asl| [17]. Neglecting higher order terms in Eq. (2), and invoking

the fact that R ({ D*})} = 0, the incremental displacements
3. Implicit/Explicit Global Solution Algorithms  are given by,

In the numerical simulation of cable supported bridgeD W\t O
systems subjected to dynamic loads, two distinct ste@a{ R§{D }>}E{AD} = R<{Dk}>} @)
B

must be undertaken to obtain the transient solution. Tt oD
first step is performance of a static, nonlinear gravity
initialization such that the model obtains the correct The instantaneous stiffness matrix is defined as the
geometric shape of the bridge with appropriate forces ifmediate rate of change of the internal resisting and
the individual bridge deck members, towers, and cabf@ntact forces with respect to system displacements,
system. This initialization must take into account th&us,

design objectives and construction sequence of the bridge )

as the construction procedure can significantly influenqg (p*y)] = m{Rg{g H} E 5)
the gravity induced forces and the overall geometric shape E

of the bridge. Once the appropriate gravity configuration
g pprop 9 Y 9 and the individual terms of this matrix are given by

is achieved, the solution can proceed to the dynamic 3). The fi N in Eq. (3 he stiff
analysis with the static configuration (member forces and™ (,)' ) € first matrix in Eq. ( )represent.st e sti 'ness
contribution from the structural elements in the bridge

model geometry) serving as the initial condition state for del: th q s inEq. (3 he effect
the dynamic analysis. model; the second matrix in Eq. (3) represents the effective

stiffness contribution from the penalty based contact
3.1. Implicit Static Solution elements activated during contact between disjoint parts.

In the absence of contact, the contact stiffness matrix

In the computational model, the deformation of the bridg\?anishes. The incremental relationship given by Eq. (4)
is defined by a vector of global displacement components, ijes the basis for equilibrium iterations which yield
{D}. For a given set of statlcall_y gpplled externalllgags Ofhcremental displacements for updating the displacement
the structure I}, the structure is in a state of eqUIIIbrlumvector until the nodal force residuals and incremental
if the external loads equilibrate the internal resisting forc%slsplacements become small. In the static solution

of the structure, denote@{{ D})}, and the forces gener- algorithm, the instantaneous stiffness is completely

ated by any contact across disjoint parts of the Strucwrreeformed for each equilibrium interaction, leading to a full

(e.g. expansion joints) and contact forces at the caissw/ I . .
rock interface, denote@” ({D})}. In a nonlinear system ewton-Raphson procedure for equilibrium iterations.
' i y " Eguilibrium iterations proceed until the Euclidean norms

the internal and contact forces are nonlinear functions o . . .
. o . of the residual and incremental displacement vectors
the system displacements. Defining a residual VeCt?éduce below a prescribed tolerance. INSSPEND
{R ({D})} as the difference between the various force p - A .
components in the direction of each degree of freedom ICE)F%Sprogram, the implicit solution is utilized for gravity

the model initialization of the bridge system, for other nonlinear static

analyses such as push-over tests for a bridge or bridge

{REDHI={{ Q{DH}-{ P}-{r {DH}Y (1) components, and as a diagnostic tool when implementing

new nonlinear elements.
an equilibrium configuration of the structure, denoted

{D*}, results in a null residual vector, iR{D*} = 0. If 32 Explicit Dynamic Solution
{D" is thekth approximation to*}, then a Taylor series

expansion of the residual vector aboDtq yields, The transient bridge solution is based on an explicit
. integration scheme which readily admits multiple support
{RAD*H}= earthquake ground motions. The earthquake ground
@{R({Dk})} O 2 motions are defined by ground displacement time
ks

R{ D+ H oD HAD} roAD Tl (2) histories at the bridge base support locations referenced

N to an identical time frame to preserve phasing information

where,

across the bridge structure. The coupled equations of

0900 Q00 DOMO DM 00 motion for the bridge system, constructed from the
1 1 i H

0D, B B9D. A0 059D, B BBD. A0 assembly of element matrices, are given by,

Dﬁa RERE? nED DEG B ED nBD

oR C D
[a_ :D D—D N Si > mec| .I‘
D 09Q,0 Q.00 OPr,o mor, DE@) [MI DO} +[Cs K DO} +[Creer Dr 03]

HoD B 9D, EH HWDH B0, B8 +{o{DON} I {DON} ={ Riounday { Dy OD}  (6)
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where conceptuallylCssil defines the damping due to [6, 7]. McLamore et al [9] identified the modal damping of
fluid-structure interaction andC,.J] defines the the Newport and William Preston Lane Bridges, and
mechanical damping. The vect® {{ D})} represents the Brownjohn et al [8] identified the damping of the first few
internal resisting forces of the model elements, vectonodes of the Fatih Sultan Mehmet Bridge. The results of
{r {D})} represents the nodal forces due to contact dfie modal damping observations from these studies are
disjoint bridge segmentmndcaisson/rockontactand constructed in graphical form in Figure (3). In each plot,
{ Bsoundan{{Dg; 1} contains the support point forcesthe experimentally observed damping values are shown as
generated by applied ground displacements. In Eqg. (6), taéunction of frequency. The experimental data consistently
fluid-structure interaction damping forces are assumezkhibits an inverse relationship between modal damping
proportional to the absolute velocit{/D(t)} of the and modal frequency, the only major difference between
structure and the mechanical damping forces are assuntteel various bridges being the specific amplitude of the
proportional to the relative velocityD, (t)} of the damping values. In addition to the experimental values, a
structure. solid line is included for each dataset indicating the
The specific form assumed for the bridge energirequency dependency of damping which would be
dissipation, as characterized by the viscous terms in Egptained with an assumption of mass proportional
(6), has significant implications for efficient implementaspectral damping (i.eC] = B[M]). For three of the cases
tion of the explicit integration procedure for the equation&olden Gate, Newport, and William Preston), the mass
of motion. First, an appropriate damping form must bproportional damping was anchored at the fundamental
inferred from experimentally identified structural dampingnode; for the Fatih Sultan Mehment there was a wider
values. The most extensive and broad-band observatiosaatter in the data and an anchor damping value lower
data on suspension bridge damping values is providedtiran the damping of the fundamental mode proved to yield
the Golden Gate Bridge data of Abdel-Ghaffar and Scanlarbetter fit. For all of the small amplitude vibration data,

Figure 3. Experimentally observed damping in suspension bridges. (a) Golden Gate Bridge (length = 2738m); (b) Newport Bridge
(length = 907m); (c) William Preston Lane memorial Bridge (length = 890m); (d) Fatih Sultan Mehmet Bridge (length =
1510m); (e) Damping overlay for all four bridges.
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mass proportional damping provides a good representa:y 4

tion of the observed frequency dependency of dampin:f!D}“ NE [(D}n.1 ~2{D} +{D}n] (10)
For mathematical expediency, and lacking more . _

specific information about the mechanical and aerodynamic The backward difference in Eq. (9) (as apposed to a

partitioning of the damping in cable bridges1 an assumﬁentral difference) will result in S“ght accuracy loss in the

tion of viscous, absolute velocity dependent damping wiegration scheme, which is generally insignificant for

assumed in the computational model. Thus, Eq. (giese structures due to the short time step of the explicit

simplifies to, integration scheme.
Combining Eqg. (7) through Eq. (9), and introducing seis-
[MI{ D)} +[CI[{D®)} +[Q{D}1+{r ({D})} mic excitation as specified ground displacement time his-

tories yields the recursion relationship for displacement,

:{ PBounda]y({ in (t)})} (7)

In the course of this study, it was found that the use oﬁ—z{ MH D} =
strictly mass proportional damping resulted in unphysical
high frequency chatter in the explicit computational{Atz[M ]_l{Dq}n+1}_{O({D}n)} -{r{oy )1+ (11)
model. This was an artifact of the extremely low damping »
which results in short wavelength, high frequency deckAl—t A%[M]—O([M]—B[K]—v[K][M ]_l[K]]{D}n+
modes if mass proportional damping is used exclusively.
Thus in practice it is necessary to augment the masz%f[u[M]+B[K]+y[K][M ]_1[K]—Alt[M ]]{D}n—l
proportional damping with a small degree of stiffness
proportional damping to ensure high frequency modes athere vector{Dg} contains the earthquake ground
appropriately damped, this issue is essential for expliéﬁOtion displacement time histories at the individual bridge

time integration where the higher frequency modes a§é1pportT, the terms of r‘:"hi‘:h are zero exlcep't at tue bridge
resolved in the model. However, with explicit integrationSljpport ocations. For the Bay Bridge evaluation, the struc-

the Courant stability time step is also adversely impact(ia%re 1S founded on bedrocl.< and the support d|splacement
o . |ri1e histories were obtained directly from synthetic
by the damping in the highest frequency mode of the mode

£ th ina in the hiah ; edrock motions.
[18]. If the damping in the highest frequency mode Eq. (11) provides the explicit recursion relationship for

becomes large, the time step required to maintain stabil{fygate of the structural model displacements. With the
decreases, resulting in excessive computational effort-\iﬁlocity approximation which has been invoked, and the
order to achieve the combined objectives of obtainingfact that the model mass matrix is diagonal due to lumped
decreasing damping with frequency (as indicated in thfass assumptions, no matrix inversions are required for
existing observation database), a small amount of dantpe solution of D} ., - This explicit integration is condi-

ing in higher frequency modes to limit high frequencyionally stable, with the maximum time step permitted
model chatter, and a low amount of damping at the vebeing governed by the Courant limit for the discretization
highest frequency modes to prevent excessive time sfghe particular bridge model at hand. The approximation
reduction, a three-term spectral damping representatitstyoked in Eq. (9) does slightly effect the stability time

was employed, step, which must be accounted for in the selection of the
) integration step size [18].
[C] =a[M]+B[K]+y[K][M] T[K] (8)  For earthquake ground motions, there are two

) ) ) ~fundamental differences between the explicit algorithm
This form of Caughey damping [19] provides aCUbI(Ejefined in Eq. (11) and traditional seismic analyses

variation of modal damping with frequency and the threr’iﬁethods. In the explicit formulation, ground motion is

coefficients in Eq. (8) can be selected to obtain the desirgdsined in terms of ground displacement time histories

spectral damping characteristics. rather than acceleration time histories, and the computed
With stiffness proportional terms included in thedisplacement quantities are absolute displacements rather

damping matrix, the matrix is non-diagonal and traditionahan displacements relative to the ground inertial

finit differenceexperssions for the velocities must be modieference frame.

fied to avoid a matrix inversion (Cook et al [18]). To avoid

matrix inversions, and thus preserve the economy of the Element Technologies

explicit integration scheme, the finite difference EXPreRRjith careful construction and appropriate validation, it is

sions become, possible to develop an accurate reduced-order model of a
4o 1 B bridge system which captures the salient features of the
{Dly At [{D} ~{D}nl (g)dynamics of the system, yet results in a significant
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reduction of the global degrees of freedom relative toaxes of the beam element at each end (the x”, y”, z”, and
brute-force discretization with a general-purpose finitg”, y” and z” axes in Figure (4)), a third updated
element program. The element development was aimedangrangian system (x’, y’, z’) extends between the
significantly reducing the number of equations in thelement end nodes and tracks the overall displacement
global bridge model. The Courant time step limit fond rotation of the element. A fundamental assumption of
stability of the explicit integration scheme depends on tfige element is that incremental rotations occurring between
transit time of a stress wave through the smallest elemefggilibrium iterations in the implicit solution procedure, or
in the bridge model and is thus a function of the physicBetween time steps in the explicit dynamic solution, are
dimensions of the elements in the computational mod&mall and can be transformed vectorially between the local
To maximize the integration time step, an additiongfoordinate systems. This assumption is easily met for
objective was to construct element technologies whidiactical problems, particularly with explicit integration

allowed physically large element dimensions. where the time steps are small. The element also assumes
the deformational rotations, for example the rotations
4.1. Tower Flexural Fiber Model between the X', y’, and z’ axes and the x”, y”, and z” axes,

are small. Gross rigid-body rotations and translations are
A fiber flexural element was developed for characterizaemoved via the updated coordinate systems. To include
tion of the bridge towers. The element incorporates bothe initial stress (geometric stiffness) contributions for the
geometric and material nonlinearities. The framework fdfexural element, which is required for gravity initiation of
tracking geometry changes and initial stress inclusion atiee bridge model, it is necessary to include all nonlinear
common to the bridge deck truss and cable elementgms in the strain-displacement relationships. To ensure
described in subsequent sections, thus these featuresedfieiency of the element for linear as well as nonlinear
discussed in some detail for the tower element to establistoblems, a cubic displacement field approximation was
the element framework. employed for the transverse displacements of the flexural

For three-dimensional bending with finite (large)element.

rotations, the nonvectorial rotations must be incremen- Inelasticity in the flexure element is accounted for by
tally updated. The flexure element utilizes three localivision of the cross section into a number of fiber zones
element coordinate systems to track finite displacememntsth uniaxial plasticity defining the normal stress-strain
and the finite rotations of the beam segments. Two locedlationship for each zone, as indicated in Figure (4). The
coordinate systems rotate and translate with the princigglement stress resultants are determined by integration of

Figure 4. Finite rotation tower fiber flexure element.
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the fiber zone stresses over the cross section of theam element model was constructed for the general
flexural element. The evolution of the yield surface ipurpose finite element prograstiKe3D [20], and a reduced-
monitored by tracking the center of the yield region, anderder fiber model was constructed for theSPENDERS
stress update algorithm was implemented to allogrogram as shown in Figure (5). The detailed model used
accurate integration of the stress-strain constitutive lashell and beam elements to represent the laced members in
for large strain increments, including full load reversalshe tower diagonals and struts, and discretized the
To ensure path independence of the solution, thaternal cellular structure of the tower including the
implementation of the plasticity model for the implicittransverse stiffening diaphragms. The fiber model employs
Newton-Raphson equilibrium iterations employs a streg#ie fiber zone for each cell segment in the tower, for
integration whereby the element stresses are updated frex@mple, the element uses 62 zones at the base of the
the last fully converged equilibrium state. The transformdower.

tion between element local and global coordinates is The first six natural modeshapes of the tower, as
accomplished through a vector translation of elemef@mputed by detailed and reduced-order models, are
forces and displacements based on the direction cosig@@wn in Figure (5) along with selected tower frequencies
of the current updated element coordinate systerfixperimentally measured by Carder in 1936. Carder
Proceeding from a statement of virtual displacements [1A¢rformed vibrational measurements of the Bay Bridge

the flexural element matrices in natural coordinates at@vers when the tower construction was completed and
given by the towers were free standing prior to spinning of the main

cables.
The reduced-order-model provides good estimates of
(12) the tower dynamics, and in light of the potential errors in
the measured data, there is good agreement between the

numerical models and the experimental data of Carder.
{Kriexure} = [T]T%l[ Bl (%E)[ BlJd&

4.2. Reduced-Order Deck Model

1 T . s
) Ored A truss bridge deck system can demand a prohibitive
+ Bs(1d F Jd&g4T
_Il %dk ( })@{ }H:nz E | (13) " humber of elements with brute force modeling based on

shell and beam elements. An effective reduced-order model,
where [l]is the transformation matrix of direction cosinesyhich exploits the specific configuration of suspension
for the X', y’, and z’ coordinate systemB][is the linear pridges, can dramatically reduce computational effort.
strain-displacement matrixB| ({d})] is the displacement The representation of a three-dimensional discrete lattice
dependent strain displacement matrix resulting from theuss structure by an equivalent beam-like continuum has
nonlinear strain termsE] is the element stress resultantsseen wide use in the development of reduced order
fpodels. Abdel Ghaffar [3] utilized this approach in the

o ~ development of linear models for suspension bridge
term of Eq. [13] represents the initial stress contribution t&/namics and McCallen and Romstad [21] developed

the element stiffness, and with appropriate mathematic@lntinuum models for lattice structures, including both
manipulation [17], this matrix can be written as a functiogeometric and material nonlinearities. For certain bridge
of the current axial force in the member. The elemeRjeck configurations, beam-like continua models can
matrices are evaluated with a three point Lobatto quadré’dequately characterize the stiffening truss system in
ture integration which employs quadrature points at thfe mid-deck region of the structure. However, the ability
extreme ends of the element. Lobatto integration capturgg continuum based models to capture the localized
inelasticity occurring at the ends of the element, wheegfects of complex articulations at the ends of the
plasticity typically first initiates. stiffening trusses is highly suspect (Avent and Issa [22]).
For earthquake simulations, the element stiffness gccurate continuum representations also become
only required for the implicit iterations required for theproblematic when the bridge deck system lacks transverse
model gravity initiation. After gravity initiation, the sway bracing, and the deck is subjected to significant
element internal resisting forces are computed frogomplex warping deformation. Warping deformations defy
Eq. (14) for the explicit integration of the equations ohttempts to represent the deformations with simple
motion. beam-like kinematics. The deck model which has been
The fiber element representation of the cellular Bagleveloped represents a compromise between a highly
Bridge tower structure was assessed by comparison wéfiicient, but questionably accurate, continuum model of
detailed shell element based models and measurée deck system and a prohibitively expensive brute force
vibrational data. For this comparison, a detailed shell amfiscrete shell and beam element model of the deck.

1
{Oriexuret = [T1" _Il[B]T{F}JdE

and [%_F] is the element constitutive matrix. The secon
€

JSEE: Fall 2000, Vol. 2, No. 427



D.B. McCallen and A. Astaneh-Asl

An accurate reduced-order model of the deck fdwo-level deck system of the Bay Bridge made appropriate
a particular bridge must take into consideration theeduced-order model construction particularly challeng-
specific construction details and load paths in the deakg. Lacking transverse sway bracing between the upper
system. The configuration and connection details in tlend lower decks, see Figure (6), forces generated between

Figure 5. Detailed shell and beam element and reduced order fiber bending element tower models and computed modeshapes
(experimental values shown parenthetically).
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Figure 6. Reduced order model of the deck system. (a) Sway stiffness element; (b) Slab membrane; (c) Stiffening truss element (all
elements shown in local element updated Lagrangian coordinate systems).

the upper and lower decks must be transferred throutite method by which the model is initialized to achieve the
bending of the stiffening truss elements in an inter-de@ppropriate gravity configuration, gross model geometry
sway deformation. In the longitudinal direction, the deckhanges and large model displacements must also be
slab-to-stiffening truss connection occurs through weakccommodated for gravity initialization of the bridge
axis bending of the deck beams shown in Figure (7nodel.
providing a very flexible connection between the deck The deck truss element shares common features with
slabs and the stiffening trusses. The deck roadwdlye flexural fiber tower model element in terms of the
system, consisting of the concrete slab, deck beams, andthodology for including geometric nonlinearities,
stringers, are weakly coupled to the deck stiffening trusisplacement tracking, and elasto-plastic inelasticity.
in the longitudinal direction of the bridge, and the fullSimilar to the tower flexure element, the member motions
membrane stuffinesses of the deck slabs are not activased tracked with a local element updated Lagrangian
by transverse and vertical deformations of the stiffeningpordinate system which translates and rotates with the
trusses. The complex kinematic characteristics associaglément through space. For the static initialization
with deck cross-section warping of this particular deck deequence, it is necessary to include the geometric
not readily lend this system to accurate characterizaticomponent of element stiffness for select truss elements
with beam-like continua. to create a nonsingular initial global stiffness matrix which
The reduced-order deck model constituents consist aflows equilibrium iterations to proceed. To include the
simple truss elements for the stiffening truss members, #nitial geometric stiffness, the user must provide as input
orthotropic plane stress element for the deck slab amd initial axial tension in selected members of the deck
girder system, and a sway-stiffness element to account &iiffening truss system. For the Bay Bridge configuration,
the transverse bending of the lateral frames composedfaf example, an initial tension must be input for all of the
the deck beams and stiffening truss vertical posts, gsrtical posts of the deck trusses.
shown in Figure (6). The active global degrees of freedom A classical elasto-plastic representation provides an
consist of three translations at each joint of the deappropriate approximation for modern bridge members
system. The sway-stiffness element was implementedwdere members and connections are based on sound
eliminate the need for any rotational degrees of freedomiimelastic design methods. For some vintage steel laced
the deck model. The capability to accommodate geometriembers, recent experimental research [23] indicates the
nonlinearities associated with arbitrarily large displaceionlinear behavior can be controlled by very complex
ments was included to capture the effects of largeelastic buckling of the member or gusset plate connec-
displacements which can occur in a long bridge durinigpns. The incorporation of complex inelastic buckling of
earthquake motions. Depending on the bridge system, aridtage laced members and connections will be addressed
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in futureSUSPENDERS8evelopments and incorporated incomplex deformations in the deck/truss interaction,
the nonlinear material library as appropriate closed foreffective membrane properties cannot be easily obtained
representations of buckling laced members and pusséth simple first principal analytical solutions. For the Bay
joints are developed. Bridge model, the equivalent membrane elastic properties
The deck membrane element, which represents the daekre computed numerically by selective loading of
slab, beams, stringers, and any existing in-plane swdgtailed models of deck segments, see Figure (7). The
bracing, consists of a four node, isoparametric, orthotropiletailed deck models shown in Figure (7) were constructed
plane stress element. Potential large rigid-body displad®-include the weak connection between the deck system
ments of the element are accounted for with an updatadd the stiffening truss chords. The effective membrane
coordinate system which tracks with the element througitoperties are obtained from the detailed model analysis,
space, as indicated in Figure (7). The element matrices éoe example the longitudinal membrane effective elastic
based on a classical four node isoparametric formulatiamodulus is given by
Selection of appropriate membrane properties was a
difficult problem in the development of the reduced-order % = 2(EAwords)
model for the Bay Bridge deck system because of the we&kifective™ T Avertrone (14)
coupling between the deck slabs and stiffening trusses,
see Figure (7). The deck membranae element requitgere 4, is the stretch of the deck system for an applied
elastic constants which characterize the equivaleluad of P. After determining the appropriate elastic
stress-strain behavior of the deck system, because of tmnstants, the membrane element contribution to the

Figure 7. Deck membrane element. (a) Element degrees of freedom and updated Lagrangian coordinate system; (b) Upper and
lower deck in-plane models and equivalent membrane.
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element internal resisting forces and instantaneous s +d; s+,
stiffness are given by McCallen and Astaneh-Asl [17] Y2~ %ﬂ 5 ﬁ‘ﬁd 5 ﬁ"' (19)

_oroo The nodal forces associated with sway deformation
{O"”emb’am} - Bil;_il;_[ BI'[E][B]tDetJdéd ﬂﬁd} (15)  can be obtained analytically or numerically by analysis of
the cross section frame with the loading and boundary

conditions shown in Figure (8). For elastic behavior of the

{Knembrand = Jl- }[ B]"[E][B] tDetJd&dn (16) frame, the nodal forces associated with sway are given by
embran
-1-1
O O
where E] contains the effective material constantstl U= U D¥sway (20)

obtained from the detailed deck segment models. Classid 83 &H

four point Gaussian quadrature integration is employed Combining Eq. (17) through Eq. (20), and utilizing
for the natural coordinate integration of the matrices.  gverall equilibrium relationships between the nodal forces

The sway-stiffness element accounts for the latergy Figure (8), the sway element stiffness matrix is given
sway deformation between the upper and lower decks

resulting from flexure of the frame consisting of the deck

beams and stiffening truss vertical posts. InthedeckmodE}qlD 01 n 1 -n -1 -n -1 n oodyo

the sway stiffness element is an 8 by 8 stiffness matrix 0 ) ) ) ,00 O
which relates nodal forces to the lateral sway deformatiogd2U Eﬂ n“~ n -n°-n-n“-nn EEUZB
pf the frame. The element contains fgur nodes_ with tweyg 0 01 n 1 -n -1 -n -1 n O0d,0
in-plane displacements per node and is placed in the delck U 0 ) ) ) 2DD 0
model in addition to the truss elements which represe%hg:ﬁg_n mnnononon N EEU%
the axial stiffnesses of the individual truss posts an@qsg 2D E_l -n-1n 1 n 1 -n EEHSB
deck beams. The sway and truss elements are shown4n
- : = =5 -n*-nn® onon® o -n’Hdgs
Figure (8). The sway deformation between the decks g6 O oo-eg
approximated by the summation of angjgsandy, Eq7g E—l -n-1n 1 n 1 -n E 7%
0 0 a ud, d
Vouay = Vit Va a7y%  0On n® n -n®-n-n®-n n® Qg
where (21)
or

w=ife e e e w (18) { g = [k }a} 22)

Figure 8. Sway stiffness element providing lateral sway resistance. (a) Sway and truss elements; (b) Determination of sway
element nodal forces for a sway displacement.
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where n:%. An updated Lagrangian coordinate

_ T
system tracks with the element to remove large rigid-bochK Sway] =[ram T [T ady] (24)
displacements. Eq. (21) provides the sway element nodal To evaluate the accuracy of the reduced order deck
forces in terms of the nodal displacement quantities. Theodel, a number of comparisons were made between the
element matrices in global coordinates are provided by theduced-order deck model and a detailed beam and shell
transformation between the element instantaneoefement model of the Bay Bridge deck system. The first
updated Lagrangian system and the global systefiite modes of a simply supported twenty bay segment of

coordinates the Bay Bridge deck, as computed from detailed and
reduced-order models, are shown in Figure (9). The mode
[Oswa/] =[T{d) ] [kJ{ d} (23)shapes computed with the two models exhibited excellent

Figure 9. Natural modeshapes of a twenty bay deck segment form detailed and reduced order models.
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correlation, and the frequencies are within approximately A SUSPENDERSrogram simulation of a simple
10 percent for all of the first five modes. sagging cable experiment by Irvine and Sinclair [24] based
on this approach is illustrated in Figure (10). The initial
geometry in the finite element model is crudely represented

Bridge cables are represented with a simple tension-or‘ﬂﬂi/th two prescribed linear segments of cable elements, the
two-force member in which the cable element coding dottal length of which exactly equals the unstretched length
not permit compression to develop in any cable elemef, the actual cable. A uniform initial tension guess is
If the cable element attempts to compress, the eleméplied as user input to each cable element for initializa-
stiffness and residual contributions are neglected in ti@n of the initial stress contribution, and once gravity is
implicit solution and the element forces are neglected #PPlied, full Newton-Raphson equilibrium iterations
the explicit solution. An initial stress contribution to theAchieve the appropriate cable geometry rapidly within five
element instantaneous stiffness is included to render t@uilibrium iterations. The individual cable elements
initial global tangent stiffness matrix of the model nondisplace through large rigid-body displacements, and the
singular during gravity initialization. The procedureoverall geometry rapidly progresses to the appropriate
developed to define the initial geometry of the cables f@nging cable geometry. The numerical simulation results
based on constraining the cables by the initial unstretchpegcisely matched experimental data for the hanging cable
cable length and allowing the Newton-Raphson equilitgbtained by Irvine and Sinclair. Application of a point load
rium iterations to determine the natural sag geometry amdis also considered after gravity initialization to emulate
tension of the cables. With the initial unstretched lengttivine and Sinclair's experiment and the simulation model
of each cable serving as the constraint for the cable syscurately computed the deformed shape under gravity
tem model, the definition of the starting cable geometry iplus point loading, as shown in Figure (10).

the finite element model is arbitrary and only affects the Inthe case of the Bay Bridge, the design and construc-
number of equilibrium iterations required to achieve thgon objectives included achieving a stress state in which
natural sag. the chords and diagonals of the stiffening truss were stress

4.3. Bridge Cable Model

Figure 10. Analysis of a hanging cable. (a) Ten element cable model with initial tension and constrained length; (b) Deformed shape
at each equilibrium iterations; (c) Computed and observed cable geometry under gravity and point load; (d) Computed and
observed cable geometry under gravity and point load.
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free under full gravity dead load. The vertical posts of th@on. Once the gravity load equilibrium iterations are com-
truss were the only gravity stressed members in the dgglete, new truss diagonal and chord element lengths are
truss. This condition was obtained in field constructionomputed and stored automatically by $16$SPENDERS
by allowing the truss joints to remain loosely tacke@grogram so that these members are unstressed under the
together with construction pins until the deck was entirelgravity loads. The gravity deformed shape and tension
supported from the vertical suspenders, with final rivetingtress fields obtained from the static analysis become the
of the joints after the entire deck was suspended. Agratial condition state for the transient earthquake compu-
result of this construction sequence, the deck stiffenirigtion. Once the appropriate gravity load configuration is
truss did not resist the bridge’s gravity load as achieved, the main cables, which were allowed to slip
composite structure. This design objective is common feelative to the towers under gravity initialization to keep
many lattice deck suspension bridges. On the Bay Bridgbge towers vertical and absent of longitudinal shear loads
hydraulic jacking was also employed between the ma(@er the construction sequence), are slaved to the top of
cables and the cable saddles atop the towers priorthe towers to provide cable-to-tower connectivity for
application of the deck system to ensure the towetRe transient response analysis. The model developed for
would be straight, vertical, and free of shear forces am@lf of the Bay Bridge geometry is shown in Figure (12).
bending moments at the completion of the constructiothis model initialization procedure ensures that the
sequence. bridge computational model will have the correct as-built
The computational procedure for model initializatiorPridge geometry, including the appropriate vertical curve
must emulate this construction sequence. To initialize th@ the main span and the appropriate grade in the side
bridge model to the appropriate gravity configuration, agPans. The cables have the correct geometric shape and
automated procedure was developed. The procedure figg@vity load tensions, the towers will be vertical and
analyzes the main cables and towers under full bridge de#¢Pjected to only axial forces, and the stiffening truss
load to determine the final main cable elevations under figliagonals and chords will also be stress free at the end of
gravity load (Figure (11b-c)). For this analysis, th@ravity initialization as required to emulate the as-built
unstretched length of the main cables is required, andigsign objective.
can be estimated from the design documents or cable ]
surveys obtained during bridge construction (Figuré""’ Deck and Caisson Contact Models

(11a)). Based on the nodal locations from the dead-lo@gtidge deck systems typically contain a number of
analysis and the final design elevations of the de&fryctural discontinuities at interior expansion joints and
system, the unstretched length of the vertical suspendgfsbutments to accommodate thermal deformations. These
is computed and the initial nodal locations of the decfiscontinuities can have a pronounced influence on the
nodes are determined, see Figure (11d). This provides tigamic response of the bridge system and can result in
information necessary for constraining the definition ofignificant dynamic impact between disjoint bridge
the initial undeformed bridge model geometry. Theegments. Observational measurements of the earthquake
implicit nonlinear solution procedure is then used witlesponse of bridges have indicated the occurrence of large
Newton-Raphson equilibrium iterations until the gravityaccelerations and intersegment forces as a result of impact
load geometry and stress field are achieved. of adjacent bridge segments [25]. In addition to deck
With the current availability of powerful finite elementsegment impact, unanchored bridge foundations can
mesh generators, it is computationally expedient fgotentially be subjected to rocking and uplift, with mul-
generate a starting model with a parabolic approximatiaiple occurrences of impact. For the Bay Bridge, the towers
to the main cable geometry. For most suspension bridgese placed on large caissons which rest on bedrock, the
the parabolic approximation provides a geometry close ¢aissons are unanchored to the bedrock, and the potential
the correct gravity shape. In the Bay Bridge model generexists for rocking and uplift of the caissons under strong
tion, the parabolic shape is computed such that the mground motion. Foundation rocking can significantly
cables have the appropriate unstretched length, and #ffect the superstructure response to earthquake ground
initial location of the deck nodes are determined by droprotions [26] and should be accounted for in an accurate
ping to an elevation corresponding to the unstretchedimerical simulation.
length of the vertical suspenders. The chord and diagonal To simulate deck impact and foundation rocking, a
elements of the truss are inactivated for the gravity initiatimple node-to-node contact element was developed for
ization, so the deck truss will not contribute stiffness ttheSUSPENDERBrogram which allows two nodes to close
the model during application of gravity loads. In additionwithin a specified stand off distance before contact
the main cables are allowed to slip horizontally relative toccurs. The element also admits tensile forces to develop
the tops of the towers, so the towers will be straight afetween the nodes as the nodes separate to allow repre-
subjected to pure axial load at the end of gravity initializasentation of displacement-limiting structural details which
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Figure 11. Development of a model with appropriate gravity shape and forces. (a) Estimate unstretched length of main cables based
on bridge design and cable field survey data; (b) Generate simple model geometry with the appropriate unstretched
engths; (c) Perform static load analysis of main cables with full dead load of deck system; (d) Based on computed main
cable geometry and design deck elevations, determined stretched lengths of suspenders under gravity load, (e) Gener-
ate a model with arbitrary geometry constrained by unstretched cable lengths; (f) Perform implicit Newton-Raphson
equilibrium iterations for gravity loads until convergence.

can prohibit large separation of two bridge segments. For 0 th ] 0
the Bay Bridge, the main suspended spans are connectdd J 0l -1 0O 310 O
to the towers and central anchorage caisson with a s@, O=Kem 01 OFO E5CE(‘JJc(dZ!dJJ 5c))+
joint that couples the deck to the tower or caisson in th 28 ?1 1 %ZE BiE =

transverse direction, but allows limited longitudinal

motion once static friction of the joint is overcome, as 0 th ] 0
shown in Figure (13). This construction detail can be Ol -1 0o glg g
compressive when the deck moves into the caisson or Ky 11 iN B’*D DBT%@JT (d2, b 3r)) (25)
tensile when the deck pulls away from the caisson. %2@ Eps B

In the node-to-node contact element, the nodal force
contributions are generated vectorially and translated injghere
the global bridge geometry based on the current deformed

shape of the bridge system. The contact forces are givi¥e (da. ch.5c) =1.0 when ((d: - d2) - 8¢) >0 and
by We(d2,d1,8c) =0when ((di—dz2) = 8c) <0,
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Figure 12. Gravity initialization of the model with different initial model geometries.

Figure 13. Nodal contact in the bridge model. (a) Contact at the deck-to-tower and deck-to-caisson connection; (b) Contact at the
base of a caisson.

Wr (dp, dy, 87) =1.0 when ((d, —dy) - 8;) >0 and the bridge system model. There have been many simple
W1 (da, i, 37) = Owhen ((dp— dy) — ;) < O approximations to contact with various quasi-linearized

gap elements, which are highly suspect in their ability to
The nodal contact forces are directed colinear a|0r2ﬂ:curately represent violent, sudden impacts. Based on
the line defined by the two contact nodes (Nbdd  the authors’ practical experience with implicit time integra-
NodeJ in Figure (13)) and can be transformed to globalon finite element programs, the seismic analysis of large
coordinates based on the direction cosines of the libgidges with multiple impacting segments can be quite
segment. challenging with many equilibrium iterations and potential
Pounding between bridge segments or foundatiatbnverge failure for each severe impact event. At best,
rocking with impact can result in abrupt nonlinearities imecurring pounding significantly detracts from the
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efficiency of implicit time integration schemes. Explicitdetermine the natural modeshapes and frequencies of the
time integration, on the other hand, is particularly adept 8tructure and the time history response to earthquake
accurately tracking impact events, with no detriment t@round motion can be computed. Selected natural modes
the algorithm efficiency when severe pounding occurs.©f the Bay Bridge obtained from t&USPENDERS
program are shown in Figure (14). The fundamental mode

5. Example Application: Bay Bridge Response consists of transverse motion of a main span and this
to Near-Field Earthquake Ground Motions concurs with the fundamental mode observed by Carder

in this 1936 field study. The computed modal period also

Once a bridge model is appropriately initialized undeagrees quite well with the period Carder measured in his

gravity loading, eigenvalue analyses can be performeditstrumentation survey.

Figure 14. Bridge vibration characteristics and long period near-field motions. (a) Computed modeshapes (experimental values shown
parenthetically); (b) Computed regional wave propagation at selected times; (c) Synthetic near-field ground motions.
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Until very recently, the prevailing engineering wisdonradiation patterns and permanent co-seismic tectonic plate
has been that the lowest frequency, long wavelength moadeevements can result in large, long period ground
of long-span bridges (e.g. the 9 second mode of the Bdisplacement pulses and that these long period
Bridge) are generally not major contributors to the seism@mmponents can indeed excite the long wavelength modes
response of the structure. Arguments offered in suppatflexible bridge structures.
of this view were based on the notion that the long period As an illustrative example of the potential effects
earthquake ground motions do not contain significamtf near field motions, the response of the Bay Bridge to
energy in the period range beyond 2 to 3 seconds, agidhty seconds of simulated ground motions has been
that the time duration of a typical earthquake is too shartbmputed. The simulated ground motions at the Bay
to allow response build-up of these long period modeBridge site for 8 = 7 Hayward Fault earthquake are shown
However, the advent of broad-band digital strong motioim Figure (14) for selected support locations and the
instruments and the measurement of a number dHlative displacements across the bridge, as referenced to
near-field earthquake seismograms have challenged the Yerba Bucna Anchorage, are shown in Figure (15),
traditional thinking. It is now clear that seismic wavesee Figure (1) for the Hayward fault proximity to the

Figure 15. Near-field ground motions, (a) Comparison of Bay Bridge synthetic record with Chi-Chi earthquake measured record; (b)
Relative motion across the bridge for the synthetic record.
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bridge). These synthetic motions were computed withTehe exaggerated bridge displacements (displacement
massively parallel geophysics finite difference wave propacale factor = 50) indicate that when the large displace-
gation model (Larsen and Schultz [27], Stidham et al [28]pent pulse occurs, the flexible deck cannot react as fast as
and include long period displacement pulses and pernthe stiff towers and lags behind the tower motion, as the
nent ground displacements resulting from tectoni®wers begin to return with the ground displacement in
motions. The propagation of long period seismic wavég€ opposite direction, the deck has finally begun to

across the region are also shown in Figure (14) at selecfé§Pond and essentially flings through the towers in the
instants of time. For the particular bi-lateral rup'[uré’ppOSIte direction. This type of motion imparts significant

scenario considered, the ground motions exhibit a Ia@gergy into the long wavelength modes right at the initia-

displacement pulse transverse to the bridge structure with" of the earthquake motions, and is essential the same

a permanent displacement offset resulting from tectonrigsponse phenomenon described for buildings subjected
P P 9 to long period motions by Hall et al [29, 30]. This rupture

motion. The relative displacements across the brid%%enario, as well as a number of other fault rupture
exhibit a pulse with peak amplitude on the order @75 scenarios under study, indicate the important effect long
across the 3400 bridge. These synthetic ground mOtiO”%eriod motions can play in the bridge response.
were computed prior to the Chi-Chi earthquake in Taiwan e global bridge model in Figure (16) contains 7600
and itis instructive to compare these records with some @grees of freedom and time history compute times for 80
the Chi-Chi measurements. Figure (15) shows an overla¥conds of earthquake ground motion require approxi-
of the synthetic Bay Bridge motion with a near-fieldmately 7 hours for the full three dimensional simulations of
Taiwan record and shows remarkably similar waveformge Bay Bridge system on a single processor Silicon
for the synthetic and real earthquakes. Graphics Octane Workstation. This provides for over-night
The transient dynamic response of the bridge to thigrnaround of relatively long time duration earthquake
particular fault rupture scenario is shown in Figure (16%imulations for this large structure.

Figure 16. Response of the Bay Bridge system to the synthetic earthquake motions.
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6. Conclusions

The special purpose of computational model which has
been developed provides a powerful research tool for
investigating the nonlinear dynamic response character-
istics of suspension bridges. The specialized bridge
elements allow practical exploitation of an explicit tim
integration solution of the equations of motion, which”
is a reliable and robust algorithm for highly nonlinear
problems. The program can characterize a full bridge
system with a modest number of global degrees of
freedom and seismic simulation solution times on an
desktop workstation are economical enough to allow
efficient parametric studies. The explicit time integration
provides a robust solution framework that will readily
accommodate future implementation of complex nonlinear
material behavior, such as laced member buckling afld
connection failures, and multiphysics capabilities such as
direct coupling of fluid-structure interaction. Perhaps
the most important aspect of the explicit integration
framework is that it allows for easy migration of the
SUSPENDERS@rogram to the new generation of massivelyy
parallel computer. The fact that the explicit framework does
not require a large matrix inversion, and essentially solves
a set of h” decoupled equations, makes parallel imple-
mentation straightforward. The next major planned
development step for thBUSPENDER$rogram is a 10.
parallel implementation. It is projected that with new 1000+
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