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The effect of interpolation function for describing spatial variations of slip on the
fault surface is investigated using finite fault simulation. In analogy with h-p notion
in finite element method, the effect of increasing the order of interpolation function
and decreasing the size of elements is studied here. In this regard, the fault surface
is discretized using different elements, namely, constant discontinuous elements
with various sizes, and first order contentious elements with different sizes. In order
of parameterization, a bilinear interpolation technique is introduced to represent
variation of source parameters within the subfault area. To provide an objective
basis for comparison, the September 28, 2004 Parkfield earthquake Mw 6.1 is
considered and time-frequency, envelope-phase goodness-of-fit cr iteria  is
calculated to compare synthetic and observed waveforms quantitatively in time
and frequency domains. It was revealed that by increasing the order of interpolation
function, the overall consistency of observed and synthetic waveforms will increase,
while the expense of computational analyses will also increase accordingly.
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ABSTRACT

1. Introduction

Simulation of earthquake ground motion has a
profound implications for seismological and engin-
eering applications. From a seismological point of
view, forward modeling provides bases for solving
inverse problems and obtaining the rupture process
of the fault surface based on observed records of
the earthquake. More specifically, in non-linear
inverse problems, the procedure to obtain a solution
is based on solving a large number of forward
problems. By comparing synthetic and observed
records, it is possible to obtain the history of the
development of the rupture and the time function
describing the slip on the fault. From engineering
point of view, ground motion simulation provides
means to assess the ground shaking level at different
points on the earth surface. Traditionally, ground

motion records of past earthquakes are used as
representative of ground shaking in engineering
design applications. Unfortunately, the library of
existing recordings only samples a small subset of
possible earthquake scenarios. In this condition,
ground motion simulation has made prospects to
access ground-motion synthesis for upcoming
earthquakes.

Earthquake rupture can be approached in two
different ways known as kinematic and dynamic.
Kinematic models of the source consider the slip of
the fault without relating it to stresses cause it. The
second approach considers the complete fracture
process relating the fault slip to the stress acting on
the fault region. Kinematic earthquake rupture is
described purely in terms of the slip vector as a
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function of the coordinates on the fault plane and
time. In this type of model, it is relatively simple to
determine the corresponding elastic displacement
field [1].

Considering kinematic source models, the process
of numerically simulating the strong-motion time
series dates back to the work of Hartzell [2] and
Irikura [3]. The simulation techniques are extended
to include the stochastic representation of source
and path effects [4], theoretical full waveform
Green's functions [5] or various combinations of
these approaches. A comprehensive comparison of
many kinematic simulation approaches was provided
by Hartzell et al. [6]. For simulation of earthquake
ground motion by hybrid methods, it is a common
task to discriminate between high and low fre-
quency components of motion around 1 Hz. The
low frequency component of motion is usually
modeled through the deterministic method that
contains a theoretically rigorous representation of
fault rupture and wave propagation effects. High
frequency components of motion are commonly
calculated by stochastic models basically because of
the random nature of high frequency components
of motion.

In kinematic simulation approach, the fault
surface is divided into some small subfaults. The
value of slip is usually considered to be uniform
among the surface of each subfault along strike and
dip directions. Similarly, other rupture parameters
including rise time and rake angle, are also con-
sidered to be constant among each subfault. The
assumption of constant values of kinematic
parameters comes from the need of parameteriza-
tion and discretization of the fault surface in
representation theory [7]. However, it is possible to
use higher order interpolation function to model
variability of slip and other parameters among
each subfault. Liu and Archuleta [8] introduced
the linear interpolation function to model surface
variability of slip among subfaults in the inversion
of 1989 Loma Prieta earthquake. Custodio [9] also
used the linear interpolation method for finite fault
inversion of 2004 Parkfield earthquake.

Increasing the order of interpolation will result
in higher computational demand [10], both for
solving the forward and inverse problems. However,
there is a question that how much the accuracy of

simulation will be improved by increasing the order
of interpolation while a considerable increase in
computational time is taken into account. This paper
pursues to answer this question. In this regard, in the
first section, the principles of kinematic simulation
of earthquake will be reviewed. It will be followed
by the description of fault discretization containing
elements with the order of zero (constant) and one
(linear). To examine the influence of increasing the
order of interpolation in discretization process of
fault surface, the case of September 28, 2004 Mw
6.1 Parkfield earthquake is considered because of
the comprehensive recordings of this event. At the
end, a discussion is provided regarding the trade-off
between the increase in simulation accuracy and
the computational effort of analyses.

2. Principle of Deterministic Simulation of
Earthquakes

Faulting is characterized by the slipping of one
side of a fault surface with respect to the other. The
process of slip on a buried fault and the waves
radiated from it can naturally be analyzed by the
representation theorem. If the earth is modeled as
an elastic solid, then the displacement field due to a
point unit dislocation can be taken as a Green's
function for the earthquake faulting problem. The
displacement field at all points in the earth due to an
arbitrary distribution of slip on a fault is expressed
as an integral over the fault surface of the slip
distribution convolved with the Green's function,
as follow [7]:
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where ( ),  iu x t  is the displacement field in ( ), , x t  S
is the fault plane, jkpqC  are elastic constants, G is
the Green's function of the medium and [u] is the
dislocation field on the fault plane. The representa-
tion theorem provides an expression for the radiation
in an elastic media resulting from the creation of a
discontinuity in the displacement and stress fields
across a fault surface. The Green's function, G, used
in the representation theorem is the response of the
medium to a unit point force in the absence of
discontinuities. The Green's function can be used to
satisfy any boundary condition on the fault surface;
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hence, the elastodynamic equations only need to be
solved once.

3. Discretization of Fault Surface

In order to solve the forward or inverse problem,
it is necessary to obtain the discrete form of surface
integral in Equation (1). In this regard, the fault
surface is divided into discrete subfaults. Each
subfault is characterized by the value of slip along
strike and dip angles, rise time and rupture time.
Olson and Apsel [11] provided a method to estimate
the surface integral with constant elements where
locations within each element were assumed to
undergo the same slip within a specified time shift.
Taking the assumption of constant slip among
each subfault, the slip function on the fault surface
can be written as [11]:
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where J is the total number of subfaults, sj is the
slip value of subfault j and Pj (x, t) is the time
dependence of slip in j 

th subfault. Pj (x, t) represents
the combination of rupture time and rise time of
slip in subfault j. Substituting Equation (2) in
Equation (1), we have:
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where ( ),  
i
jg x t  is the Green's function for the j 

th

cell at position x in the i 
th component direction

convolved with sj and a j where a j is the area of the
subfault. It is possible to write Equation (3) in a
matrix form and solve forward or inverse problems
accordingly.

Liu and Archuleta [8] used the linear interpolation
function to model the variability of simulation
parameters within each subfault. In this approach,
the subfaults are quadrilateral elements which
should not necessarily be rectangular and equal in
area. The shape and area of each quadrilateral can
differ from others [8]. It is assumed that the subfault
is a quadrilateral element defined by the location of
four nodal points. If the quadrilateral element is
rectangular then the bilinear interpolation can be
directly applied. Rectangular elements are convenient

to use in modeling regular geometries. The simplest
of the rectangular family of elements is the four-node
rectangle, where it is assumed that the sides of the
rectangular are parallel to the global Cartesian axes.
By convention, we number the nodes sequentially
in a counterclockwise direction (Figure 1).

Assuming the linear variation of parameters
inside each rectangular element, the coordinates of
any arbitrary point inside the element can be
represented as:
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where ,  ξ η  are local coordinates in a bi-unit square,
e is the index of the subfault and iN  is the shape
function of linear interpolation defined as:
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Similarly, any simulation parameters inside the
element can be obtained by linear interpolation of
nodal values of elements as:

( ) ( )
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where ( ), 

em ξ η  could be any simulation parameters
including the slip value, rake angle, rupture velocity
and rise time. Inside each element or subfault, it is
possible to simulate the waveform radiated from
rupture by a series of point dislocations that cover
the fault. In this regard, N ξ  points along strike and

Figure 1.  Four-node rectangle scheme in a 2D domain con-
sidering one integration point (left), four integration points
(middle), and nine integration points (right).
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N η points along dip are assigned inside each element
with equal distance with each other. Indeed, to
calculate the surface integral of Equation (1), each
element contains N ξ N η interior point sources
along strike and dip angles respectively. Figure (2)
depicts the discretization of fault surface and
subfaults. In forward problem, the source parameters
are known on nodal points (black stars). The Green's
function are also evaluated inside each subfault
on the points shown with white triangles. The
surface integration of Equation (1) is evaluated on
black dots. The source parameters and Green's
functions are evaluated for each integration point
(black dots) using the bilinear interpolation relation-
ship of Equations (6). Taking this discretization
procedure, the Equation (1) could be written as a
similar form as Equation (3), while J is representing
the total number of integration points (black dots in
Figure 2).

If we assume that all elements or subfaults
have rectangular shape, the local coordinate (ξ, η)
inside each subfault is:

j
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N
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ξ
−

η = − = η
η

L

L                           (7)

Using this procedure, the source parameters
have continuous variation within the whole fault,
although their values are not smooth at the nodal
points. Moreover, the radiated wave from each
subfault is dependent on the source parameters of
four nodes of each subfault, rather than only one
parameter in the case of constant elements. As Liu
and Archuleta [8] noticed, since each node connects
four adjacent elements to each other, the bilinear
interpolation enforces a spatial correlation among
source parameters in finite fault modeling. The
similar formulation could also be applied for higher

Figure 2.  Discretization of the fault surface and subfaults.
Reproduced by the slip model of Custodio et al. [12].

order interpolation functions. The only difference is
in Equation (5) where the appropriate form of shape
functions shall be used for each kind of interpolation
function.

In the following section, the simulation analyses
will be performed for the 2004 Mw 6.1 Parkfield
earthquake with constant and linear elements.

4. Simulation Analysis

In this section, the effect of using different
interpolation functions to describe the variability of
simulation parameters is investigated by solving a
number of forward problems. In discretization of
fault surface, apart from the order of interpolation
function, the size of elements is an important
parameter. Generally, it is possible to increase the
accuracy of interpolation either by refining the
subfaults or by increasing the order of interpolation
functions with fixed subfault size [13]. It is also
possible to combine two approaches by refining the
element size and increasing the order of interpolation
function. An obvious question that arises is how well
these methods compare with the traditional constant
elements for the evaluation of integral Equation (1).
In the case of finite element method (FEM), the
capability of increasing the order of interpolation
function is coupled with mesh refinement (the h -p,
FEM) and leads to exponential rates of convergence
[14]. However, in the case of integral equation of
Equation (1), the answer to the question shall be
investigated by using different interpolation schemes
to simulate a unique earthquake and compare the
simulated waveforms with observed time histories
in order to have an objective criteria for discussion.
Thus, it is necessary to choose a well-recorded and
well-documented earthquake with sufficient number
of recordings to provide a statistical meaningful
experiment. The September 28, 2004 Mw 6.1
Parkfield earthquake is an event that satisfies all
these conditions. This earthquake provided one of
the largest amounts of near-source strong ground
motion records with more than 40 recording
stations in an epicentral distance less than 32 km
[9].

To make an objective comparison between
observed and simulated time histories, Kristekova
et al. (2006) provided a goodness-of-fit criteria by
making Time-Frequency (TF) comparison between
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waveforms. Following, the goodness-of-fits criteria
of Kristekova et al. [15] has been reviewed and a
brief description of Mw 6.1 Parkfield earthquake has
been provided. Later, a number of analyses have
been performed to make a comparison between the
results of simulation with different interpolation
schemes.

4.1. TF Goodness-of-Fit Criteria for Quantitative
Comparison of Time Signals

It is often necessary to compare two signals
whose envelopes-phase differ considerably. Such
comparison usually forms bases to quantify the
validity of new theoretical models or methods
of analyses. Kristekova et al. [15] provided an
extension of TF misfit criteria for quantitative and
objective comparison of observed and synthetic time
signals. The TF representation makes it possible to
study a spectral content at any time, as well as a time
history at any frequency. To make the comparison
between two signals, Kristekova et al. [16] introduced
a method for comparing the envelopes of TF
representation of two signals as well as their
corresponding phases. Having the envelope and
phase differences at a given TF point, they introduced
a normalized TF misfit criteria that ranges between
zero for least similarity and 10 for the most
agreement between two signals. Figure (3) depicts
the numerical values of goodness-of-fit criteria in
addition to verbal classification for the overall
comparison of signals.

Anderson [17] also provided another goodness-
of-fit criteria mainly based on characteristics
relevant in the earthquake-engineering applications.

Figure 3. Discrete goodness-of-fit numerical and verbal values.

He filtered the signals into narrow frequency
subintervals and then made comparison between
some engineering characteristics of the signals,
namely, peak acceleration, peak velocity, peak
displacement, Arias intensity, the integral of velocity
squared, Fourier spectrum and acceleration response
spectrum, the shape of the normalized integrals of
acceleration and velocity squared, and the cross
correlation. He assigned a 10-level score to each
characteristic parameter, as 10 points for the most
agreement.

Although the Anderson's goodness-of-fit criteria
is more tangible from engineering point of view,
but the envelope-phase misfits are mostly useful for
comparing relatively close envelopes-phases in
simulation process, specially where there are too
much simulated waveforms to present. The frame-
work proposed by Kristekova et al. [15] is more
robust and objective from mathematical and signal
processing point of view. Kristekova et al. [15]
criteria is used in this study to make a comparison
between observed and simulated time histories.

4.2. An Overview of 2004 Mw 6.1 Parkfield
Earthquake and Modeling Parameters

An earthquake with Mw 6.1 struck the central
coast of California in the Parkfield region at 17:15:24
(UTC), on September 28, 2004. The epicenter was
11 km south-east of Parkfield, at a depth of ap-
proximately 8 km. U.S. Geological Survey (USGS)
indicates that the event had a strike-slip mechanism.
The 2004 Parkfield earthquake ruptured an opposite
direction along the same section of the San Andreas
Fault with similar magnitude to the 1966 Parkfield
earthquake [9]. Strong motions of the 2004 earth-
quake have been recorded by California Geological
Survey (CGS) and USGS instruments.

To infer the kinematic finite-fault nature of 2004
Mw 6.1 Parkfield earthquake, Custodio et al. [12],
applied a non-linear global inversion on different
data subsets of near-source ground motion
measurements and got a slip model with amplitudes
less than 0.65 m surrounding two major areas on
the fault surface (Figure 4a). Ji [18] determined a
heterogeneous slip distribution by the low-frequency
waveform inversion and identified two specific
patches (Figure 4b). Dreger et al. [19], depicted a
2D source model on the incorporating near-field
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records of a GPS array and resulted a line-
source model consistent with the distribution of 39
aftershocks occurred 48 hours after the event
(Figure 4c). InSAR and GPS data for coseismic
and postseismic patterns were inverted by Johanson
et al. [20], simultaneously. On the coseismic slip
model, two asperities occur with the larger being
at the northwest of the hypocenter by 15 km, and
for the postseismic period the model identifies a
deep slip patch (Figure 4d). Mendoza and Hartzell
[21], determined the coseismic slip using both
numerically calculated synthetic Green's function
based on a flat-layered 1D velocity model and
EGF's derived from a Mw 5.0 aftershock (Figure 4e).
The results show that the slip expands to the
northwest increasing the rupture velocity. The source
model  inferred using synthetic Green's function is
consistent with the source model obtained by
Custodio et al. [12]. Barnahart and Lohman [22],
Houlie et al. [23] and also many others have dis-
cussed about the rupture model of 2004 Mw 6.1
Parkfield earthquake.

Figure 4. a) Custodio et al. [12] slip model, b) Ji [18] slip model, c) Dreger et al. [19] slip model, d) Johanson et al. [20] slip model,
e) Mendoza and Hartzell [21] slip model.

In this study, the source model of 2004 Mw 6.1
Parkfield earthquake is used for solving a number of
forward problems and make a comparison between
synthetic time histories and strong motion records of
this event. A strike-slip fault is considered with 140
degrees strike, 87 degrees dip and 40 km length
[24]. Indeed, strong motion records reported by
26 CGS stations around the epicenter at a great
azimuthal coverage are used in this study (Figure 5).
In the calculation procedure, we consider the Custodio
et al. [12] slip model (http://equake-rc.info/srcmod,
Figure 6). The epicenter is located at 35.81 latitudes
and -120.37 longitudes [24]. In simulation analyses,
the velocity waveforms are considered for com-
parison and all waveforms and Green's functions are
filtered by a 4th order Butterworth band-pass filter
with linear phase response in 0.16-1.00 Hz frequency
range.

To compute the synthetic seismograms for each
station, the Green's functions should be calculated at
any point on the fault area and then convolve them
with the specific source parameters at that point.

http://equake-rc.info/srcmod
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Figure 5. Location of the 2004 Mw 6.1 Parkfield earthquake
and 26 stations used in this study. Epicenter is shown with a
red star.

Table 1. Parkfield velocity structure used in the computation
of Green's functions [24, 28].

performed for constant (P = 0) and linear (P = 1)
elements. Considering the constant elements, two
simulation analyses were performed using different
element sizes. In the first analysis, the fault surface
was discretized into 21×9 subfaults. The element size
at each subfault is defined to be 1900×1700 m in the
directions of strike and dip angles respectively.
Furthermore, the fault surface was reproduced
and divided into coarser subfaults with the size
of 5700  ×  5100 m in strike and dip directions
respectively. Using the linear interpolation function,
various cases of simulations were considered to
examine the influence of different parameters. The
first parameter is the size of elements. The limiting
factor in selecting the size of subfaults is the size
that Custodio [12] considered for inversion analyses.
Therefore, two element sizes of 1900 × 1700 m and
5700 × 5100 m are considered in strike and dip
angles respectively in analogy with analysis cases
with constant element. Moreover, each element
could be further discretized for calculation of
Green's functions and performing the surface
integration of Equation (3). Figure (7) depicts
different configuration of Green's function and
integration points. Table (2) also represents details
of each simulation case.

The goodness-of-fit (GOF) values, as the
measures of comparison, are presented in Table
(2). As it is clear from this table, by decreasing the
size of subfaults, the GOF values are increasing.
However, for constant elements (P = 0), there is a
pronounced increase in the GOF value when the
element size is decreased. Considering the results
of linear elements (P = 1), it is possible to observe a
kind of trade-off between the element size and
number of Green's function inside each subfault.

Figure 6. 2004 Mw 6.1 Parkfield slip model (http://equake-rc.
info/srcmod).

The Green's functions are computed by AXITRA
code [25], [26] using the frequency-wavenumber
method of Bouchon [27]. The 1D velocity structure
is used in the computation of Green's functions.
The P-wave structure is obtained by interpolation
of the 3D model [23]. The S-wave structure is
obtained by applying a 1D bilateral interpolation of

p

s

v
v

 ratio [24] (Table 1).

4.3. 2004 Mw 6.1 Parkfield Simulation Analyses

In this section, the results of simulation analyses
are presented with the purpose of studying the
effect of changing the element size and interpolation
order on the simulation. To assess the effect of
interpolation order, two sets of simulation were
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Table 2. Goodness-of-fit verbal value comparison on EW, NS, UP components.

Figure 7. Each subfault is divided into elements depicting a
finer grid spacing for Green's functions computations. The
elements contain 1, 4 and 9 integration points from left to right,
respectively. In subfigure (a) the subfault is divided into four
elements, in subfigure (b) into nine elements and in subfigure
(c) into 16 elements respectively.

However, the influence of element size is more
effective by comparing simulation cases 3 and 4 in
Table (2). In simulation case 3, the subfault size is
5700 × 5100 m in the direction of strike and dip
angle respectively, with 16 Green's function
elements and nine integration points (Figure 2).
Although the distance between Green's points are

smaller in case 3, the GOF values of case 4, with
more subfaults and less Green's points is higher.
This can be associated to the size of asperities as
depicted on Figure (6). The size of subfaults
shall be small enough to capture the variability of
slip on the fault surface, especially at the locations
of asperities.

Simulation cases 4-15 represent the effects of
considering different numbers of Green's and
integration points inside each subfault. As it is
clear, increasing the number of Green's and
integration points, while the size of the subfaults is
fixed to 1900 × 1700 m, will not change the value of
GOF considerably. For instance, in EW direction,
the GOF values ranges from 4.67 to 4.84, which is
approximately 4% of variability. However this is
not the case from computational point of view,
where, the computation cost of analysis increase
considerably by increasing number of Green's
points inside each subfault. Comparing simulation
case 4 and 15, the number of Green's elements in
the latter case is 16 times and the number of
integration points is nine times larger than simulation
4. However, the GOF value shows an increase of
around 4%. It should be noted that the most intensive
and computation consuming part of finite fault
modeling is the calculation of Green's functions.
However, the results of Table (2) shows that the
quality of simulation will not increase considerably
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by increasing the number of Green's points inside
each subfault.

Having a better understanding of influence of
Green's function variability on the results of
simulation, Figure (8) depicts a comparison between
velocity waveforms of Green's functions moment
tensor elements for two point sources A and B.
The A and B sources are located at a same layer
inside a specific subfault as shown on Figure (9).
The waveforms in Figure (8) are shifted to better
reveal the similarity of signals. As it is clear from
this Figure, six moment tensor elements of Green's
function are very similar to each other, suggesting
the validity of the assumption of having constant
Green's function, with only time shifting according
to rupture time, among each subfault, as proposed
by [11].

Figure 8. Velocity waveforms of moment tensor elements extracted by forward modeling for CH1E station. The left handed Figures
correspond to the EW component, the middle ones belong to the NS component and the right ones to the UP component.

Figure 9. Velocity waveforms of moment tensor elements
extracted by forward modeling for CH1E station. The left
handed Figures correspond to the EW component, the middle
ones belong to the NS component and the right ones to the
UP component.

5. Conclusions
The scheme of parameterization and discretiza-

tion of fault surface has an important effect on the
results of finite fault simulation. There are two
general techniques for discretizing fault surface,
namely, using finer mesh size or increasing order of
interpolation. In this paper, both techniques have
been examined through simulating a well-known
and documented earthquake, the 2004 Mw 6.1
Parkfield. The results of different simulation analy-
ses turns out that both techniques have remarkable
influence in increasing the quality of simulation;
however, the effect of using finer elements is more
pronounced. Considering the distribution of Green's
and integration points among each subfault, if the
size of the subfault is small enough, in comparison
with the size of asperities and the resolution of
velocity model of the medium, it is a valid assumption
to consider a constant Green's function for each
subfault and only apply a time shifting correspond
to the arrival time of the rupture. This would be an
important result taking into account a large com-
putational demand of calculating Green's function
in finite fault inversion and forward modelings.
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