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In this paper, the dynamics seismic activity and fractal structures in magnitude time
series of Sarpol-e Zahab earthquakes are investigated. In this case, the dynamics
seismic activity is analyzed through the evolution of the scaling parameter so-called
Hurst exponent. By estimating the Hurst parameter, we can investigate how the
consecutive earthquakes are related. It has been observed that more than one
scaling exponent is needed to account for the scaling properties of earthquake
time series. Therefore, the influence of different time-scales on the dynamics
of earthquakes is measured by decomposing the seismic time series into simple
oscillations associated with distinct time-scales. To this end, the empirical
mode decomposition (EMD) method was used to estimate the locally long-term
persistence signature derived from the Hurst exponent. As a result, the time-
dependent Hurst exponent, H(t), was estimated and all values of H> 0.5 was
obtained, indicating a long-term memory exists in earthquake time series. The
main contribution of this paper is estimating H(t) locally for different time-scales
and investigating the long-memory behavior exist in the non-stationary multifractal
time-series. The time-dependent scaling properties of earthquake time series are
associated with the relative weights of the amplitudes at characteristic frequencies.
The superiority of the method is the simplicity and the accuracy in estimating
the Hurst exponent of earthquakes in each time, without any assumption on the
probability distribution of the time series.
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ABSTRACT

1. Introduction

Self-similarity is related to the occurrence of
similar patterns at different time-scales. In this sense,
probabilistic properties of self-similar processes
remain invariant when the process is viewed at
different time-scales [1]. In mathematical expression,
a stochastic process ( ) }{ ,X t  t R +∈  is scale invari-
ant (or self-similar, denoted 'H-ss'), with Hurst pa-
rameter 0 1,H< <  if for all 0,λ >  it follows the scal-
ing law:

( ) ( ),HX t X t t R +λ ≡ λ ∈                                       (1)

where ≡  means equality in all finite dimensional

distributions [2]. The index H characterizes the
self-similar behavior of the process, and a very
large variety of methods has been proposed in the
literature for estimating it [3-5]. An example of
self-similar processes is fractional Brownian
motion (fBm), a Gaussian process with stationary
increments characterized by a positive scaling
exponent 0 < H < 1 [6]. For 0 < H < 0.5, the increments
of fBm show negative autocorrelation. The case
0.5  < H  < 1 corresponds to fBm with increment
process exhibiting long-range dependence, i.e., the
autocorrelation of the increment process decreases
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as a power law. When H = 0.5, the fBm is reduced
to Brownian motion (BM), a process with inde-
pendent increments [7].

Sometimes it happens that the self-similar
processes are not quite adequate for real world
phenomenon, and it would be useful to consider
more general classes of stochastic processes, which
are characterized by more than one parameter, but
still preserve some of the good properties of scale
invariant processes. For example, it has been observed
that more than one scaling exponent is needed to
account for the scaling properties of the real world
processes. Such processes are called multi-scaling
(or multifractals) and reflect the occurrence of
different dynamics at different time-scales, and the
local variations of roughness can be described by
allowing the Hurst exponent to vary with time [8].
Cavanaugh et al. [9], Coeurjolly [5], Goncalves
and Abry [10], Kent and Wood [11], Stoev et al. [12]
and Wang et al. [13] studied this family of self-
similar processes, and estimated the local Hurst
parameter, H(t).

Earthquakes are examples of complex phenom-
ena that are scale invariant and fractal in their
collective properties. These properties are revealed
both in nature and laboratory experiments where
the spatial, temporal and size distributions of earth-
quakes or laboratory acoustic emissions display
structures that are invariant in scale [14-16]. The
emergence of these properties is indicative of
complexity and nonlinear dynamics in the earth-
quake generation process, such that concepts
like fractals and multifractals are becoming
increasingly fundamental for understanding
geophysical processes and estimating seismic
hazard more efficiently. Therefore, time series of
earthquakes are widely used to characterize the
main features of seismicity and to provide useful
insights into the dynamics of the seismogenic
system. However, based on the multifractal
structure of seismic data, more than one scaling
exponent is needed to account for the scaling
properties of such processes.

Thus, the Hurst parameter estimation is an
important problem in earthquake studies, because
the seismicity is a complex natural phenomenon
studied from its time-space characteristics, which is
manifested according to certain statistical laws
governing its occurrence. The correlations that may

arise between the dynamics earthquakes occurrence
have been the subject of many studies conducted
around the world, especially in the most affected
countries. Recently, worldwide research activity
concerning the seismic phenomenon has focused on
the study of correlations viewed in the time series
space diagram. The correlations arises between
the dynamics earthquakes can be measured by the
Hurst parameter. Besides, by considering this
parameter locally, the correlation existance between
consecutive earthquakes can be described. To
this end, the Hilbert-Huang transform [17] for
estimating the time-dependent Hurst exponent,
H (t), of earthquakes is applied. In this method, at
first, the analysed time series decomposes into
several oscillatory modes by means of the empirical
mode decomposition (EMD). Secondly, the Hilbert
transform is applied to these oscillations to obtain
time varying attributes. The time-dependent scaling
properties of seismic data are associated with the
relative weights of the amplitudes at characteristic
frequencies.

The paper is organized as follows: In Section 2,
the Hilbert-Huang transform and the methodology
used for estimation of H (t) are reviewed. In Section
3, the performance of the method is evaluated for
simulated data, and then the method to estimate the
time-dependent Hurst exponent for Sarpol-e Zahab
Seismic data during November 12, 2017 to January
20, 2018 is applied to find a pattern that exists
between consecutive earthquakes. By this method,
the negative and positive autocorrelation exists
between consecutive earthquakes is investigated by
evolution of the time-dependent Hurst parameter
for all times.

2. Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) [17] is a
method proposed in analysis of non-linear and non-
stationary processes. It was originally introduced
in studying water wave evolution, but it has proven
to be a useful tool for other complex signals [18-23].

The HHT consists of two steps: namely, the
empirical mode decomposition (EMD) and the
Hilbert transform (HT). The EMD decomposes the
time series into a set of intrinsic mode functions
(IMFs) and the Hilbert transformation of these
IMFs provides local frequency and amplitude
attributes [1]. The EMD is a full adoptive decom-
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Figure 1. The local amplitudes ( )ka t  and the periods ( )k tτ  are computed for a simulated fractional Brownian motion with
Hurst parameter H=0.6 and length 10000 from Equation (6) ( )( ) ( ).H t

k ka t t∝ τ  In these plots, the instantaneous amplitude is a
function of period for four times t =1520, 3570, 5630 and 7840.

position that does not require any a priori basis
systems. The purpose of the method is to identify
oscillating components of the process with the
scales defined by the local maxima and the minima
of the data itself. Hence, given a time series
X (t), t =1, 2, ..., N, the EMD decomposes it into a
finite number of IMFs denoted as ck (t), k = 1, ..., n
and a residue function, r  (t). The IMFs are com-
ponents oscillating around zero and obtained
through a sifting process which uses the local
extrema to separate oscillations starting with the
highest frequency. At the end of the sifting process,
the time series X (t) can be expressed as:

1

( ) ( ) ( )  

n

k
k

X t c t r t
=

= +∑                                        (2)

where the residue function, r  (t), is the non-oscillating
drift of the data [17].

First, the EMD method pre-processes the time
series and then the Hilbert transform is applied. This
method, generates components of the time series
whose Hilbert transform leads to physically
meaningful definitions of instantaneous amplitude
and frequency. The Hilbert transformation of each
function kc  is defined as:

µ ( )1( )  

k
k

c tc t d
t

∞

−∞

= τ
π − τ∫                                          (3)

where the integral has a singular point at tτ =  and
it is defined as a Cauchy principal value [19]. In
this case, a complex function ,kC%  would be defined
as µ( ) ( ) ( ),k k kC t c t c t= +%  with amplitude ( )ka t  and

phase ( )k tφ  that are defined as follows:

µ 22( ) ( ) ( )k k ka t c t c t= +                                          (4)

µ1 ( )
( ) tan

( )
k

k
k

c tt
c t

−

φ =                                                  (5)

Besides, the instantaneous frequency is defined
as the derivative of the phase, ( ),k tφ  with respect
to the time

( )( ) k
k

tt
dt

φ
ω =                                                     (6)

3. Time-Dependent Hurst Parameter Estimation

The time-dependent Hurst estimation method
proposed in [1] was constructed by observing
how the local amplitudes ( )ka t , Equation (3), change
with respect to the local periods  

1( ) ( ),k kt t−τ = ω
Equation (4), for all k = 1, 2, ..., n. The estimation
method was first applied to fBm, and empirically
observed that the amplitude function obtained
through the HHT follows a power-law behavior
with respect to the instantaneous period as:

( )( ) ( )H t
k ka t t∝ τ                                                      (7)

where the time-dependent Hurst exponent describes
the local scaling properties of the IMF amplitudes
and takes values distributed around the Hurst
parameter of fBm [1]. When we fit a linear regres-
sion line, between log ( )ka t  and log ( )k tτ  for four
randomly chosen times instances of a fractional
Brownian motion with length T = 10000 and Hurst
parameter H = 0.6, in Figure (1), the time-dependent
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Hurst exponent, *( )H t , is estimated from the slope
of the regression line. As it can be seen, all estimated
Hurst parameters are consistently close to the value
H = 0.6.

Figure (2) shows the time-dependent Hurst
parameter that is estimated locally for all times in
t = 1 to 10000, for a simulated fBM with H = 0.6
and length 10000. Then, the EMD method is
applied and *( )H t  is estimated for different times.
The mean and standard deviation of estimated *( )H t
in Figure (2) are 0.5957 and 0.0079, respectively.
As it can be seen in simulated data, combination of
EMD and HHT methods, estimated the Hurst
parameter accurately, where the mean is close to the
value 0.6 that the process was generated from, and
the standard deviation is very small.

To investigate the accuracy of the estimation
method, the method for simulated data should be
applied. We have simulated m = 100 sample paths
of fractional Brownian motions with length T =
10000 and Hurst parameter H  = 0.6. Then, the

Figure 3. The mean-square of errors of the estimation method for m=100 iteration of the estimation algorithm for sample paths of
fractional Brownian motion with length 10000 and Hurst parameter H=0.6, for the first 1000 observations.

time-dependent Hurst exponent, H (t), is estimated
for each time. The time-dependent sample mean for

each t is calculated as 
1

1( ) ( )
m

j
j

H t H t
m =

= ∑ . Besides,

we the mean square of errors (MSE) of the
estimation is calculated as:

2

1 1

1 ( ( ) )
m T

j
j t

MSE H t H
mT = =

= −∑∑                               (8)

where H is the Hurst parameter of a fBm that is
simulated, and ( )jH t  is the Hurst exponent estimated
from the jth sample path simulated from fBm.
Figure (3) shows the MSEs of *( )H t  for Hurst
parameter H = 0.6. The small values of MSEs,
show the accuracy of the estimation method.

3.1. Analysis of the Hurst Exponent for Seismic
Data

In this section, we investigate the evolution of
the time-dependent Hurst exponent in time series of
seismic events (by magnitude) occurred in Sarpol-e

Figure 2. The time-dependent Hurst exponent, H 
* (t), estimated by the EMD method for a simulated fractional Brownian motion

with Hurst parameter H = 0.6 and length 10000. The exponent H 
* (t) is on average, close to the Hurst parameter 0.6. The mean

and standard deviation of estimated H 
* (t) in this figure are 0.5957 and 0.0079, respectively.
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Zahab during November 12, 2017 to January 20,
2018 with a total of 295 seismic events with
magnitude M≥ 2.2, the data period is about two
months, beginning with the earthquake occurred on
12/11/2017 at 21:05:36 and ending with the earth-
quake on 20/01/2018 at 05:35:51. The time series of
seismic events is depicted in Figure (4) and logarithm

of frequency vs. magnitude for the earthquakes is
shown in Figure (5).

Using the empirical mode decomposition method
on the time series of seismic events, and applying
the Hilbert-Huang transform on IMFs, the Hurst
exponent is estimated locally for all times. The result
is depicted in Figure (6) that shows the evolution

Figure 5. Logarithm of frequency vs. magnitude for the seismic events occurred since November 12, 2017 to January 20, 2018 in
the Sarpol-e Zahab region.

Figure 4. Time-series of magnitudes of the Sarpol-e Zahab seismic activities during November 12, 2017 to January 20, 2018, (295)
earthquakes.

Figure 6. Time-dependent Hurst parameter * ( )H t  for seismic events occurred in the Sarpol-e Zahab region, since November 12,
2017 to January 20, 2018
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model of the time-dependent Hurst parameter
calculated for seismic activities occurred in the
Sarpol-e Zahab region for a period of two months,
from November 12, 2017 to January 20, 2018.
As mentioned before, by estimating the Hurst
parameter locally, we can investigate how con-
secutive earthquakes are related, and we can find a
pattern between seismic activities. To this end, we
have to separate the estimated Hurst parameters
which are greater than 0.5, which shows the long
memory pattern that exists between consecutive
earthquakes. The trends and variation of the Hurst
parameter reveals the time-dependent Hurst
evolution for the considered period. The case
0 < H < 0.5 corresponds to negative autocorrelation
and the case 0.5  <  H < 1 exhibit long-range de-
pendence, or long memory behavior, i.e., the auto-
correlation of the process decreases as a power
law. By separating the local Hurst parameters that
are greater than 0.5 in Figure (6) and also compare
this parameter with the dates that earthquakes
occurred, we understand that, the long-memory
behavior exists in consecutive earthquakes during

Figure 7. The map shows the events in Sarpol-e Zahab earth-
quakes in Iran.

25/11/2017 and 13/1/2018. Besides, there is a strong
positive autocorrelation between earthquakes
during 7/1/2018 to 13/1/2018. Moreover, Figure (6)
shows that, in spite of the small values of the local
Hurst parameter for foreshocks that shows a
stochastic behavior in seismic activities, there is an
increasing trend that exists between foreshocks,
which leads to the main shock, and also between
the aftershocks that goes to zero through seven days
after the main shock occurred.

4. Conclusion

In this paper, we investigated the negative and
positive autocorrelations exist between consecutive
seismic activities by estimating the time-dependent
Hurst parameter, *( )H t . To this end, the empirical
mode decomposition and the Hilbert-Huang trans-
form are applied. Using this method, the seismic
activities are studied locally, and the autocorrelation
between consecutive earthquakes are estimated in
each time. We have investigated the superiority of
the estimator by simulation. Furthermore, the method
is applied in estimating *( )H t  of earthquakes
occurred in Sarpol-e Zahab during November 12,
2017 to January 20, 2018. By estimating the Hurst
parameter locally, and considering the values of *( )H t
that are greater than 0.5, we identify that the long-
memory behavior exist in consecutive earthquakes
during 25/11/2017 and 13/1/2018. It is also seen that,
in spite of small values of *( )H t  for some times,
which shows the stochastic behavior in earthquakes,
the local Hurst parameters are tending to be greater
than 0.5, and after this patterns, a peak in magnitude
is seen. This paper shows that the combination of
the EMD and its associated Hilbert spectral analysis
offers a powerful tool to uncover the time-dependent
scaling patterns of consecutive seismic activities
data.
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