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Shear behavior and the failure modes of shear stressed masonry walls have been
the subject of many investigations. In the present paper, the performance of an
interface elasto-plastic constitutive model for the analysis of unreinforced masonry
walls by means of micro-finite element modeling is evaluated. The micro-model is
utilized to obtain the behavior of unreinforced masonry walls, based on assumption
that the masonry bricks, mortar and their interface are three separate elements. In
the present modeling, the behavior of bricks and mortar is assumed to comply
with the plastic-damage model which is based on multiple damage variables. The
behavior of the interface element is assumed to comply with the coulomb friction
model having a limit on the critical shear stresses. A nonlinear analysis is performed
by the application of explicit formulae in which displacements and rotations
between bricks are taken into consideration. To validate the model, experimental
results of masonry elements and walls is compared with the results obtained from the
numerical analysis. It is concluded that the suggested model is suitable for assessing
the behavior of masonry walls under vertical and horizontal loading.

Nonlinear Analysis and Modeling of
Unreinforced Masonry Shear Walls Based

on Plastic Damage Model

A.A. Akbarzade M. 
1* and A.A. Tasnimi   

2

1. Ph.D Candidate, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran,
* Corresponding Author; akbarzadeabbas@ymail.com

2. Professor, Structural Engineering Division, Dept. of Civil and Environmental Engineering,
Tarbiat Modares University, Tehran, I.R. Iran

Keywords:
Masonry walls;
Nonlinear analysis;
Isotropic damage model;
Micro-model;
Numerical analysis

1. Introduction

Unreinforced masonry buildings constructed in
seismic zones are vulnerable and take a significant
risk during an earthquake. In such buildings masonry
shear walls are the only structural components
which must resist against both gravitational and
seismic lateral loadings. Consequently shear behav-
ior and failure modes of masonry walls have been
the subject of many investigations. The large number
of influencing factors, such as dimensions, material
properties and anisotropy of bricks and mortar and
joint’s width, arrangement of bed as well as head
joints and quality of workmanship, make the
simulation of masonry buildings extremely difficult.
Moreover, an accurate masonry description needs
a complete set of experimental data. In many
researches, two different approaches based on
macro and micro models have been used. The macro-
models constitute an effective method to analyze

the global response of masonry structures. In such
an approach, masonry is regarded as an equivalent
material, where mortar and bricks are melted
together and appropriate relations are established
between averaged masonry strains and averaged
masonry stresses. A number of such models have
been developed by other authors [1-6]. Among them
Lourenco [1] has proposed a nonlinear constitutive
model for in-plane loaded walls based on the plastic-
ity theory. Also Massart et al [7] have developed
an interesting two-dimensional anisotropic damage
model in a “multi-plane” framework.

In micro-model approach, it is possible to
characterize mortar, bricks and their interfaces
separately, adopting suitable constitutive laws for
each component, which take their different mechani-
cal behavior into account [6, 8-12]. The micro-model
is probably the best tool available to analyze and
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understand the behavior of masonry, particularly
concerning its local response but requires an
intensive computational effort. To overcome this
problem, Tzamtzis [13] and Sutcliffe et al [14] have
proposed a simplified micro-modeling procedure
which is an intermediate approach, where the
properties of mortar and the unit-mortar interface
are clamped into a common element, while separate
elements are used to represent the brick units.

In this study, a micro-model is used to assess
the behavior of masonry shear walls assuming that
bricks, mortar and their interface are three separate
elements. In this model, the behavior of bricks and
mortar is assumed to obey the plastic-damage model
developed by Lee and Fenves [15]. This plastic-
damage model was developed using the concept of
fracture-energy. Two damage variables, one for
tensile damage and the other for compressive
damage, account for the different damage states.
Since mortar and brick similar to concrete, behave
differently in tension and compression and also
because under the application of reversal loads,
their strength in nonlinear region is reduced due to
cracking and crushing, therefore this model used
for concrete can also be suggested for these materi-
als. Of course in this case, parameters involved
should be obtained analytically and experimentally.
In this study for bricks and mortar, the yield function
proposed by Lubliner et al [16] and modified using
multiple damage (or hardening) variables by Lee
and Fenves [15] is used. The difference in behavior
of the materials used under tension and compression
is taken into account in this function. Also the
behavior of the interface between mortar and
masonry brick is assumed to obey the coulomb
friction model having a limit on the critical shear
stresses.

A nonlinear analysis is performed by the
application of explicit formulae in which displace-
ments and rotations between bricks are taken into
consideration. The verification of the analysis was
carried out by comparing the numerical results of
three experimental tests of masonry units and three
masonry shear walls which were experimentally
tested under in-plane shear loading and compressive
gravitational load. The selected walls are those
experimentally studied by Ganz and Thurlimann
[17], Raijmakers and Vermeltfoort [18] and Tasnimi
[19-20].

2. Theoretical Background

2.1.Brick and Mortar Model

In this model, the behavior  of  bricks and  mortar
is assumed to obey the plastic-damage model devel-
oped by Lee and Fenves [15]. This plastic damage
model has been developed using thermodynamical
approach [21-22]. Constitutive relations are derived
from thermodynamic potential functions and conse-
quently, they are consistent in the thermodynamic
context. In this approach, because well-defined
potential functions are required and the associability
between state variables and their conjugate forces
are preferred, it is difficult to construct the constitu-
tive system based on physical observations, which is
more appropriate for modeling quasi-brittle materials
such as brick or mortar. For instance, applying the
associative plastic flow rule to a model gives a
poor result in dilatancy evaluation. Therefore, the
constitutive equations for a plastic-damage model
are derived in a more direct, but still thermodynami-
cally consistent manner. In this model, two damage
variables such as tensile and compressive, account
for the different damage states.

Also in this model, difference between the
degradation of the elastic stiffness in tension and
compression tests is considered. So in either case,
the effect is more pronounced as the plastic strain
increases.

The yield function proposed by Lubliner et al
[16] that was modified using multiple damage (or
hardening) variables by Lee and Fenves [15] for
bricks and mortar is used. The difference in behavior
of the materials used under tension and compression
is taken into account in this function. Details of the
framework for this plastic-damage model and
purposed yield condition are given below.

2.2. Stress-Strain Relations

In the incremental theory of plasticity, the strain
tensor ε  is decomposed into the elastic part elε  and
the plastic part .plε  The strain rate decomposition is
assumed for the rate-independent model as below:

σ=εε+ε=ε − :, 1
      E    elplel &&&                                   (1)

where ε&  is the total strain rate, elε&  and plε&  are the
elastic and plastic part of the strain rate respectively,
the elastic modulus E is a rank four tensor, and σ  is
the stress tensor.
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The stress-strain relations for bricks and mortar
are governed by scalar damaged elasticity:

)(: plelK ε−ε=σ       and    elel KkK    o)1( −=       (2)

where 
elKo  is the initial or undamaged elastic stiff-

ness of the material, elK  is the degraded or damaged
elastic stiffness; and k is the scalar stiffness degra-
dation variable, which can take values in the range
from zero for undamaged material to one for fully
damaged material.

Damage associated with the failure mechanisms
of the masonry (cracking and crushing) therefore
results in a reduction of the elastic stiffness. Within
the context of the scalar-damage theory, the stiff-
ness degradation is isotropic and characterized by a
single degradation variable k. Following the usual
notions of continuum damage mechanics, the
effective stress is defined as:

)( plel :K= ε−εσ o                                              (3)

The stress is related to the effective stress through
the scalar degradation relation:

σ−=σ    k )1(                                                      (4)

For any given cross-section of the material,
the factor (1-k) represents the ratio of effective
load-carrying area (i.e., the overall area minus the
damaged area) to the overall section area. In the
absence of damage, k = 0, the effective stress σ
coincides with the stress, .σ  When damage occurs,
however, the effective stress is more representative
than the stress, because it is the effective stress area
that is resisting the external loads. It is, therefore,
convenient to formulate the plasticity problem in
terms of the effective stress.

2.3. Hardening Variables

Generally damaged states in tension and com-
pression are specified independently by two
hardening variables which are referred to as
equivalent plastic strains in tension )~( pl

tε  and
equivalent plastic strains in compression ),~( pl

cε
respectively. It is assumed that the micro-cracking
and crushing in the quasi-brittle materials like brick
or mortar are represented by increasing values of
the hardening variables. These variables control the
evolution of the yield surface and the elastic stiffness
degradation. They are also referred to the dissipated
fracture energy required to generate micro-cracks.

Because tensile and compressive damages are quite
different in quasi-brittle materials, it is not possible to
represent all damage states by a single parameter.
To account for the different damage responses of
brick or mortar in tension and compression, a multi-
hardening (or multi-softening) yield function is used.
This function has more than one variable to describe
the obtained yield surface. If two state variables tσ
and cσ  represent the uniaxial tensile strength and
compressive strength of the material, respectively,
the admissible yield function is constrained by the
following condition:

0),,( ≤σσσ ctF                                                  (5)

It is assumed that F is an isotropic function in
the stress space and a first-degree homogeneous
function with respect to all three variables. In the
present model, the uniaxial strength function is
expressed in terms of two damage parameters tk
and ck  given below:

)(,)(                           cccttt k  k σ=σσ=σ                             (6)

assuming that both relations in Eq. (6) can be
factored into the degradation damage and the
effective-stress responses for both tension and
compression state yields:

ttt   k σ−=σ )1(                                                    (7)

ccc   k σ−=σ )1(                                                   (8)

The single degradation damage k can be used to
describe both tensile and compressive degradation
responses as below:

)1()1(1)~(          ct
pl kkkk −−−=ε=                            (9)

Note that k in Eq. (9) satisfies the constraint
10 ≤≤ k  and it is tk  and ck  for uniaxial tensile

and compressive case respectively. Since F is a
first-degree homogeneous function and the definition
of k in Eq. (9) does hold, the yield function can be
written as:

0)~,( ≤εσ   
plF                                                   (10)

2.4. Damage and Stiffness Degradation

The equations of the hardening variable pl
tε

~

and pl
cε

~  could be conveniently formulated by
considering uniaxial loading conditions that can be
extended to multi-axial states.

It is assumed that the uniaxial stress-strain
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curves for tension and compression can be converted
into stress versus plastic strain curves in the simple
form of:

)~,~(        

pl
t

pl
ttt εεσ=σ &                                               (11)

)~,~(        

pl
c

pl
ccc εεσ=σ &                                              (12)

The equivalent plastic strains could be evaluated

by ∫ ε=ε
t pl

t
pl
t td      

0
~~ &   and ∫ ε=ε

t pl
c

pl
c td      

0
~~ &  respectively..

As shown in Figure (1), when the brick or mortar
specimen is unloaded from any point on the strain
softening branch of the stress-strain curves, the un-
loading response is observed to be weakened, that is
the elastic stiffness of the material appears to be
damaged (degraded). The degradation of the elastic
stiffness is significantly different between tension
and compression tests. So in either case, the effect
is more pronounced as the plastic strain increases.
The degraded response of masonry is characterized
by two independent uniaxial damage variable, tk
and ck  which are assumed to be functions of the
equivalent plastic strains,

)10(),~(      t
pl
ttt k kk  ≤≤ε=                                     (13)

)10(),~(      c
pl
ccc k kk  ≤≤ε=                                   (14)

The uniaxial degradation variables are increasing
functions of the equivalent plastic strains. They can
take values ranging from zero to one, for undamaged
and fully damaged material respectively. If oE  is
the initial (undamaged) elastic modulus of material,
the stress-strain relations under uniaxial tension and
compression loading are respectively,

)~()1(      
pl
ttott  Ek ε−ε−=σ                                    (15)

)~()1(      
pl
ctocc  Ek ε−ε−=σ                                   (16)

Under uniaxial loading cracks propagate in a
direction transverse to the stress direction. The
distribution and propagation of crack, therefore,
causes a reduction of the available load-carrying
area, which in turn leads to an increase in the effec-
tive stress. The effect is less pronounced under
compressive loading since cracks run parallel to the
loading direction. However, after a significant amount
of crushing, the effective load-carrying area is also
significantly reduced. The effective uniaxial stresses
are given as:

)~(
)1(

   

 

pl
tto

t

t
t  E

k
ε−ε=

−
σ=σ                                 (17)

)~(
)1(

   

 

pl
cco

c

c
c  E

k
ε−ε=

−
σ=σ                               (18)

The effective uniaxial stresses determine the size
of the yield (or failure) surface.

2.5. Yield Condition

The plastic damage model uses a yield condition
based on the yield function proposed by Lubliner
et al [16]. This yield function is modified by Lee and
Fenves [15] and hence the yield function takes the
following form:

0)~()

)~(3(
1

1)~,(

max

max

≤εσ−σ−γ

−σεβ+α−
α−

=εσ

    

         

pl
c

plpl

                   

pqF

)

)

       (19)

where γ  and α  are dimensionless material constants,
p  is the effective hydrostatic pressure, q  is the

Von Mises equivalent effective stress and maxσ
)

(the algebraically maximum eigenvalue of )σ  is the
maximum principal stress. The function )~(    

plεβ  in
this equation is given by:Figure 1. Response of masonry to uniaxial loading.
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)1()1(
)~(

)~(
)~( α+−α−

εσ

εσ
=εβ

  

  

   pl
tt

pl
ccpl

 

 

                   (20)

where tσ  and cσ  are the effective tensile and
compressive stresses, respectively. In biaxial com-
pression, with maxσ

)
= 0, Eq. (19) reduces to the

well-known Drucker-Prager yield condition. The
coefficient α can be determined from the initial
equibiaxial and uniaxial compressive yield stress
and according to Lee and Fenves [15] is limited to
0 ≤α≤ 0.5.

The coefficient γ would be only considered when

maxσ
)

< 0 for triaxial compression stress state. This
coefficient can be determined by comparing the yield
conditions along the tensile and compressive merid-
ians. By  definition, the tensile meridian (TM) is the
locus of stress states satisfying the condition =σmax

ˆ

321 σ=σ>σ
)))

  and the compressive meridian (CM) is
the locus of stress states such that >σ=σ=σ 21max

)))

3σ
)

 where 21, σσ
))

  and 3σ
)

are the eigenvalue of the
effective stress tensor, it can be easily shown that
along the tensile and compressive meridians, the
following relations exist:

] pqCM  
−=σ

3
1

max
)

                                          (21)

] pqTM −=σ
3
2

max
)

                                         (22)

For any given value of the hydrostatic pressure
)(   p  two cases may be considered:

Case 1) When 0s max <ˆ

In this case the yield conditions along the tensile
and compressive meridians are:

For (TM); ( ) c        pq σα−=α+γ−





 +γ )1(31

3
2

    (23)

For (CM); ( ) c        pq σα−=α+γ−





 +γ )1(31

3
1

   (24)

If  

CM

TM
c q

q
  =η is assumed, then the constant c η  is

given by 
32
3

+γ
+γ=η   c  and hence 

12
)1(3

−η
η−=γ

  

    

c

c .

According to Lubliner et al [16], the constant c η
does not seem to be contradicted by experimental
evidence. For quasi-brittle materials like concrete
the general value of c η  is 

3
2  from which γ  would

be 3.

Case 2) When 0s max >ˆ

In this case the yield conditions along the tensile
and compressive meridians reduce to:

For (TM); ( ) c        pq σα−=α+β−





 +β )1(31

3
1

    (25)

For (CM); ( ) c        pq σα−=α+β−





 +β )1(31

3
2

   (26)

If 
CM

TM
t q

q
  =η  is assumed, then for any given value

of the hydrostatic pressure )(   p  and having the

condition ,0max >σ
)

 then we have 
32

3
+β

+β=η
 

  t  and

hence 
12

)1(3
−η
η−=β

t

t

  

    .

Typical yield surfaces and deviatoric plane for
plane stress state are shown in Figures (2a) and (2b),
respectively.

2.6. Flow Rule

Plastic flow is governed by a flow potential (G)
and according to the flow rule we have:

Figure 2. Yield surfaces (a) in the deviatoric plane; (b) in plane
stress.



JSEE / Winter 2010, Vol. 11, No. 4194

A.A. Akbarzade M. and A.A. Tasnimi

σ∂
σ∂

λ=ε
 

    Gpl )(&&                                              (27)

where λ&  is the non-negative plastic multiplier. The
plastic potential is the effective stress space. The
flow potential (G) chosen for this model is the
Drucker-Prager hyperbolic function given below:

ΨΨ tan)tan( 22 pqeG to −+σ=                     (28)

where Ψ  is the dilation angle and measured in
p-q plane at high pressure; toσ  is the uniaxial tensile
stress at failure; and e is a parameter referred to as
the eccentricity that defines the rate at which the
function approaches the asymptote. In summary, the
elastic-plastic response of the damaged plasticity
model is described in terms of the effective stress
and the hardening variables:

{ }

σ∂
σ∂λ=ε

εεσ=ε

≤εσσ∈ε−ε=σ

 

    

         

       

G

h

 K

pl

plplpl

plplel
o

)(

.)~,(
~

0)~,()(:

&&

&&
                    (29)

Here λ&  and F obey the Kuhn-Tucker conditions:

0,0,0 ≤≥λ=λ FF                             
&&                                (30)

The stress is calculated in terms of stiffness
degradation variable, )~,(       

plk εσ  and the effective
stress is:

σ−=σ    k )1(                                                    (31)

The constitutive relations for the elastic-plastic
response, Eq. (29), are decoupled from the stiffness
degradation response, Eq. (31), which makes the
model attractive for an effective numerical imple-
mentation.

2.7. Unit-Mortar Interface Model

The interface between mortar and brick is
modeled using coulomb friction model which is based
on maximum shear and normal stress applied to the
interface. The standard coulomb friction model
assumes that two materials sustain the same shear
stress and no relative motion occurs if the equivalent
frictional stress (τ) is less than the critical stress

)( critτ  which is proportional to the contact pressure
)..(, cpp       +µ=τ  This is also called cohesive limit.

Friction coefficient µ and coefficient of cohesion
(c) for isotropic materials is supposed to be same in

all directions. In three dimensions, two tangential
stresses exist at the interface, which are normal to
each other i.e. ., 21 ττ  The equivalent shear stress is

therefore given by 2
2

2
1   eq τ+τ=τ  and .. cp   crit +µ=τ

It is possible to put a limit on the critical stress

:)( maxτ

),.(min maxτ+µ=τ cp     crit                                   (32)

If the equivalent stress reaches the critical stress
),( criteq τ=τ  slip can occur. The optional equivalent

shear stress limit )( eqτ  may also be specified so that,
regardless of the magnitude of the contact pressure,
sliding will occur if the magnitudes of the equivalent
shear stress reach this value. This shear stress limit
is typically introduced in cases when the contact
pressure stress may become very large, causing the
Coulomb theory to provide a critical shear stress at
the interface that exceeds the yield stress in the
material beneath the contact surface. Figure (3)
illustrates the slip region for the friction model used
for interface element when c = 0.

2.8. Nonlinear Analysis by Applying the Explicit
Formulae

The dynamic equation of equilibrium given by
Eq. (33) is an ordinary differential equation having

 Figure 3. Slip regions for the friction model (c = 0).
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constant coefficient.

RKXXCXM =++ &&&                                        (33)

where M, C and K are the mass, damping and
stiffness matrices respectively.  XXX &&& ,,  and R are
the displacement, velocity, acceleration and load
vector in time domain respectively.

Many simple finite difference methods can be
used to estimate acceleration and velocity with
respect to displacement. A method which can be
used for solving these problems is the central differ-
ence method. In this method it is assumed that:

)2(
1

2      

  

  
tttttt   XXX

t
X ∆∆

∆
+− +−=&&                            (34)

Error in Eq. (34) is of the order ).( 2
  t∆  To have

the same order of error in velocity formulae, the
following equation can be used:

)(
2

1
    

 

  
ttttt   XX

t
X ∆∆

∆
+− +=&                                 (35)

The response for displacement in the time )( tt  ∆+
can be obtained using the equation;

tttt
     RKXXMXM =++ &&&                                      (36)

Substituting  in Eq. (36), the following equation is
obtained:

tttt

tt

 

 

     

   

XC
t

M
t

X
t
MKR

XC
t

M
t

 
   

  

∆

∆

∆∆∆

∆∆

−

+







 −−






 −−

=





 +

2
112

2
11

22

2

    (37)

Using Eq. (37), the term tt  

 X ∆+  can be obtained.
This integration is an explicit method in which the
displacement is independent of acceleration for time
(t), and velocity and displacement for the time

)( tt  ∆+  can be obtained by using the above
equations in time (t). This method is a very simple
explicit step-by-step method. However, it is only
conditionally stable and will blow up if the time
step is not made short enough. It is clear that more
effective methods are available, but this method is
the simplest procedure and by adopting a shorter time
step than others can be used to obtain a satisfactory
representation of the dynamic input and response.

In this method in order to satisfy the convergence
of analysis, the time increment of t ∆  should be less
than :crt ∆

c
l  lt et

cr 
.=∆                                                      (38)

where tl = 0.7-0.9, el  is the smallest element dimen-

sion, ,
ρ

= Ec E is elastic modulus of materials and

ρ  is density of material used.

3. Numerical and Experimental Results

To validate the suggested model, during the con-
struction of test specimens, quality control samples
were obtained for the mortar, brick and masonry
units. The results of numerical analyses are compared
with the results of tested masonry units, masonry
samples and masonry walls. The control test data
contain horizontal or vertical displacements during all
states of behavior up to failure. Comparison was
deeply carried out between the failure modes and
displacement history.

3.1. Prisms Tests

As illustrated in Figure (4), masonry prisms
comprising two, three and four bricks were tested to
failure and their numerical models were analyzed
using material elastic (young modulus and poison
ratio) and plastic properties (strength and other
plasticity parameters). Some of these material
properties were obtained experimentally and some
evaluated numerically. The behavior of the interface
element is assumed to obey the coulomb friction
model having a limit on the critical shear stresses.
The detailed description of the analysis method
and results interpretation is given in the following.

3.2. Material Properties

3.2.1. Brick

Ten brick samples were loaded in compression
according to ASTM-C67 to obtain their mechanical
properties. From stress-strain curves illustrated in
Figure (5a), the average modulus of elasticity of ten
bricks (Eb) was evaluated as 135Mpa. The average
compressive strength of ten brick samples was
found to be 9.28MPa. By comparing various refer-
ences, it is supposed that the tensile strength of brick
is approximately 

20
1  of its compressive strength

[6, 11, 23-25].

3.2.2. Mortar

The mortar mix proportion by volume was 1 part
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Figure 4. Compression and shear tests of brick prisms.

Figure 5. Stress-strain relationship for all bricks and mortars.

Portland cement type I and 6 parts sand. Ten 50mm
mortar cube specimens were taken from each
mortar mix and tested for compressive strength
according to the ASTM C-109-1992. The modulus
of elasticity of mortar (Emo) was evaluated as 795Mpa
from the stress-strain curves illustrated in Figure
(5b). The average mortar compressive strength
(fcmo) was 9.367MPa.

Comparing various references, it is supposed
that the tensile strength of mortar is approximately
of its compressive strength [6, 11, 23-25]. The mor-
tar is stronger and stiffer than brick. Although this

contradicts to the most realistic masonry walls in
other countries, but the authors have found that this
is true for most Iranian made mortar and bricks.

3.2.3. Brick Prisms

Various masonry prisms were built up of clay
bricks and 10mm thick mortar bed joints. In order
to evaluate the compressive strength of masonry
units, fifteen 3-course masonry prisms were tested
according to ASTM C-1314-2000. Using universal
testing machine, according to ASTM-C952, specimens
were subjected to vertical uniformly distributed
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were obtained when they are loaded up to fracture
using various constant compression forces together
with increasing shear forces, Figure (4d).

3.2.4. Plasticity Parameters

As mentioned, earlier parameters kc, kt  , α and
are η needed for nonlinear state of behavior.
However, as the monotonic load was applied (no
reversed load) the parameters kc and kt are not
needed and only α and η are given for the analysis.

As it is difficult to experimentally obtain the
plasticity parameters needed for nonlinear analysis,
their values were estimated on the basis of excellent
agreement between the results of numerical analysis
and test results carried out on brick prisms. Of course
these parameters are chosen with this view that
mortar and bricks behave approximately the same
as that of concrete, but are only more ductile. The
published Poisson's ratio values for bricks and
mortar from other sources are used and not obtained
experimentally here [6, 11, 23-25]. Tables (1) and (2)
provide the average value of mechanical properties
of tested samples and their plasticity parameters.

In order to validate the proposed model, nonlinear
numerical analysis was carried out on tested brick
prisms whose material properties and plasticity
parameters are given in Tables (1) and (2). For
numerical analysis of proposed model, rectangular
meshes are adopted for the model; and plane stress
4-node bilinear finite elements are used. The bricks
and mortar mesh sizes are assumed to be 50mm and
10mm respectively. With these sizes, the requirement
of equation 38 is satisfied. Plastic-damage model
was included in the analysis. Using this model and
inserting material elastic and plastic properties and
brick-mortar interface properties, samples were
loaded and analyzed up to failure. The time step was
chosen so that the equation 38 is satisfied.

Figure (7) shows the cracking and chipping of
bricks in test and numerical analysis. During the
experiment, chipping of bricks was observed but it
could not be shown in the suggested model. How-
ever, the extent of displacement perpendicular to
the loading direction is presented in the numerical
analyzes which is an indication of bricks chipping.

Also Figure (6) illustrates the comparison between
numerical and experimental stress-strain curves of
brick prisms with excellent agreement.

load while increasing top controlled displacement
until their failure, Figure (4b). The average prism
compressive strength (fcm) was 4.26MPa and that
of modulus of elasticity (Em) was 207MPa.

In this investigation, the average compressive
strength of masonry prisms was less than the aver-
age compressive strength of the used bricks and
mortar. This is due to different material properties
that cause vertical splitting of the bricks to occur
prior to the crushing of the mortar. It is stated that
the higher Poisson’s ratio of the mortar results in a
tendency for lateral mortar tensile strains to exceed
the lateral brick rupture strains [26]. Therefore, the
normal compression and lateral biaxial tension in
the bricks reduces its crushing strength and induces
a tendency for vertical splitting. Masonry prisms
failure occurs after the vertical splitting strength of
bricks is exceeded which is less than the compres-
sive strength of the bricks and mortar.

The results in Figure (6) show that the highest
strength is obtained for the 4 brick masonry units,
and the lowest strength occurs in the case with three
bricks. This result is reasonable because the similar
bricks and mortar are used in these units and the
highest strength is obtained for units having lower

L
H .

Figure 6. Numerical and experimental stress-strain curves.

As there is no ASTM testing procedure given for
shear test of masonry samples, the modified triplet
specimen for pure shear was used to obtain the
mortar shear strength and friction coefficient [27].
This specimen represents the actual shear loading
case of masonry walls along the mortar bed joints.
The average values of angle of friction )(φ  and
coefficient of cohesion (c) from three prism samples
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Table 2. Plasticity parameters (value with * are typical values retrieved from various sources in the literature).

Research 

Brick Mortar 

Poisson Ratio  
( bv ) cbη  bα  

Poisson Ratio  
( mv ) cmη  mα  

PRESENT 0.15*  1.0 0.00 0. 2*  0.95 0.045 
TASEXP 0.15* 0.85 0.08 0. 2*  0.90 0.045 
GANEXP 0.18  1.00 0.00 0.18   0.95 0.045 
RAJEXP   0.15

 
 0.80 0.08 0.2  0.85 0.045 

 

3.3. Brick Walls

3.3.1. Wall TASEXP

The numerical analysis of a tested wall (TASEXP)
carried out by Tasnimi [19] is used to validate this
model. The dimensions of this wall were 300cm
length, 200cm height and 20cm thickness. This wall
was built of solid clay bricks (212 x 104 x 52mm3) and
10mm thick mortar made of 1:6 cement to sand ratio
by volume. The wall consisted of a masonry panel
having lateral concrete flanges at the top to distribute
the lateral concentrated loads uniformly. Lateral
loads were applied using hydraulic jacks at both sides
of the wall. The characteristics of bricks, mortar, and
their joints are shown in Table (1). The wall was
firstly subjected to a vertical uniformly distributed
load P = 24.53kN/m and then a lateral increasing
force was applied on the concrete beam under
displacement control. The loading was continued
until cracking appeared and up to the threshold of
collapse.

For numerical analysis of proposed model,
rectangular meshes are adopted for the model and
plane stress 4-node bilinear finite elements are used.
The behavior of materials used was defined as in
the proposed model. As the exact brick-mortar

Table 1. Mechanical properties (value with * are typical values retrieved from various sources in the literature).

Specimens Tested 
Research 

Present Tests TASEXP GANEXP RAJEXP 

Brick 
fcb   (MPa) 9.28

 
14.22 9.50 40* 

ftb    (MPa) 0.46* 0.7* 0.68 2 
Eb   (MPa) 135

 
8000 5460 16700

 

Mortar 
fcmo (MPa) 9.36 6.23  9.30 10.5

 

ftmo  (MPa) 0.23* 0.15* 0.28 0.25 
Emo (MPa) 795 1213 2000 15000 

Prisms 
fcbm  (MPa) 

2 Bricks 5.54 - - - 
3 Bricks 4.26 - - - 
4 Bricks 7.22 - - - 

f tm    (MPa)  - - - - 
Em   (MPa)  207 - - - 

 
Interface 
Element  φ 13 35* 35 36 

 c (MPa) 0.3 0.3* 0.3* 0.35 

 

Figure 7. Numerical and experimental cracking and chipping of
two brick prisms.
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interface properties of this sample are not given in
the relevant reference, the common values are
used. The numerical load versus displacement
curve for the top row of the wall is compared with
the experimental one, see Figure (8). A good correla-
tion and similarity between the experimental results
and those of the model is observed.

The collapse mechanism with diagonal cracking
through joints and bricks and crushing of the com-
pressed toes are observed in both the model and the
experimental results. It should be noted that in the
experiment, the applied lateral load was in two direc-
tions and the relevant crack patterns were produced
in two directions, whereas in numerical analysis the
loading is only in one direction.

3.3.2. Wall GANEXP

The numerical analysis of a tested wall GANEXP
worked out by Ganz and Turlimann [17] is another
evidence to validate the proposed model. This wall
consisted of a masonry panel having two lateral
concrete flanges at the top and bottom. This wall had
a total width of 360cm and a total height of 200cm.
The wall was firstly subjected to a vertical uniformly
distributed load P =1.91MPa, in addition to the self
weigh, then a horizontal monotonically increased
force was applied on the top flange under displace-

ment control.
Tables (1) and (2) show the characteristics of

bricks, mortar, and their joints. For numerical analy-
sis with proposed model, rectangular meshes are
adopted for the model. Plane stress 4-node bilinear
finite elements are used. The numerical load versus
displacement curve is plotted in Figure (9), and
compared with the experimental one. A reasonably
good agreement is found. As it is evident by the
significant development of compressive damage,
the failure is dominated by masonry crushing in
accordance with the experimental evidence.

3.3.3. Wall RAJEXP

The third tested wall (RAJEXP) that was numeri-
cally analyzed for the calibration of the proposed
model is that tested by Raijmakers and Vermeltfoort
[18]. This wall consisted of a pier having a width/
height ratio of one (990 x 1000 mm2), built up with 18
courses (16 active courses and 2 courses clamped in
steel beams) of Joosten solid clay bricks (204 x 98 x

50mm3) and 10mm thick mortar (1:2:9, cement, lime
and sand by volume). The piers were subjected to a
vertical uniformly distributed load P = 1.21MPa
before a horizontal load was monotonically increased
under top displacement control d until failure, see
Figure (10). For the numerical analysis, bricks and

Figure 8. Comparison between numerical and experimental results, Wall TASEXP.
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Figure 9. Comparison between numerical and experimental results, Wall GANEXP.

Figure 10. Comparison between numerical and experimental results, Wall RAJEXP.

mortar are represented by plane stress continuum
elements while interface is modeled by contact
elements using Coulomb friction model.

Material properties used in this model are given
in Tables (1) and (2). The comparison between
numerical and experimental load-displacement
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diagrams is shown in Figure (10). It should be noted
that in Figure (10) no picture of the experimental
result is included because it was not available in
the reference and therefore, the mechanism of
failure and horizontal displacement up to failure is
presented.  It is illustrated that the collapse mecha-
nism is characterized by crushing of the compressed
toes and a complete diagonal cracking through joints
and bricks in both experimental and numerical
results.

4. Conclusions

A micro-finite element model based on the
modified yield function utilizing multiple concrete
damage variables is proposed for the nonlinear
analysis of unreinforced masonry walls. In proposed
model, bricks, mortar and their interface assumed to
be three separate elements and their behavior obey
concrete plastic-damage model developed based
on concrete fracture-energy concept. In addition,
independent tensile and compressive behaviors for
all materials are considered. The behavior of the
interface element is assumed to obey the coulomb
friction model having a limit on the critical shear
stresses. However the research reported in this
article leads to the following conclusions:
v The proposed model is suitable for linear and

nonlinear analysis of unreinforced masonry walls
with no limitation on the consideration of various
variables such as geometrical dimension and
material properties.

v Based on micro consideration in the analysis
the localized cracking and failure could be
predicted accurately.

v The tensile and compressive behavior of brick
and mortar and that of interface element would
be easily considered in all state of behavior up to
collapse.

v The proposed model is capable to recognize the
failure mode of the URM walls.

v The plasticity parameters of the used material
could not be easily evaluated which may cause
some error on the wall capacity.
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Notations

c : Coefficient of cohesion
C : Damping matrix
e : Eccentricity parameter (defines the rate at

which the function approaches the asymptote)
E : Elastic modulus (a rank four tensor)

oE : Initial (undamaged) elastic modulus (a rank
four tensor)

F : Isotopic function in the stress space / first-
degree homogeneous function

mf ′ : Uniaxial compressive strength normal to bed
joint

G : Flow potential
k : Scalar stiffness degradation variable
K : Stiffness matrix

elK : Degraded or damaged elastic stiffness
el
oK : Initial or undamaged elastic stiffness

el : The smallest element dimension
M : Mass matrix
p : Normal stresses at interface (contact pressure)
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p : Effective hydrostatic pressure
q : Von Missies equivalent effective stress
R : Load vector in time domain
s : Deviatoric part of the effective stress tensor
X : Displacement in time domain

X& : Velocity in time domain

X&& : Acceleration in time domain
α : Material parameters, determine the shape of

the Hill yield surface
β : Material parameters, determine the shape of

the Hill yield surface
γ : Material parameters, determine the shape of

the Hill yield surface
t ∆ : Time increment

crt ∆  : Critical time increment
ε : Strain tensor

eε : Elastic part of strain tensor
pε : Plastic part of strain tensor

ε& : Total strain rate
elε& : Elastic part of strain rate
plε& : Plastic part of strain rate
pl

tε
~ : Equivalent plastic strains in tension (Harden-

ing variable)
pl

cε
~ : Equivalent plastic strains in compression

(Hardening variable)
η : Material parameters, determine the shape of

the Hill yield surface

λ& : Non-negative plastic multiplier
µ : Coefficient of friction defined as a function of

the contact pressure

bv : Brick poisson ratio

mv : Mortar poisson ratio
ρ : Density of material
σ : Stress tensor
σ : Effective stress

yσ : Von Misses yield stress of the material

toσ : Uniaxial tensile stress at failure

toσ
)

: Algebraically maximum eigenvalue of σ
τ : Tangential stresses exist at the interface

critτ : The critical shear stress

maxτ : The maximum shear stress
φ : Angle of friction
ψ : Dilation angle


