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ABSTRACT: Dynamic behavior of a multiple supported secondary
system mounted on a torsionally coupled primary system is presented
for bi-directional random ground excitation, which is idealized as a broad
band stationary random process. Response behavior of the multiple
supported secondary system is investigated by considering and ignoring
the interaction between the primary and the secondary systems. The
response quantities of interest are the standard deviation of the absolute
acceleration at a specified node and the bending moment at a specified
support of the multiple supported secondary system. For the no interaction
case, input to the support of the secondary system is prescribed in the
form of both pseudo and cross power spectral density function (PSDF),
characterizing the correlation between various supports of the multiple
supported secondary system. For the interaction case, the conventional
ground PSDF can directly be used as input to the combined structural
system. The responses are obtained by the frequency domain spectral
analysis. The responses are obtained under a number of important
parametric variations. Numerical results of the study show that the
responses decrease with the increase in the mass ratio between the
secondary and the primary system. Under the tuned condition, a definite
maxima is observed for the higher mass ratio. For strong and weak
torsionally coupled primary systems under the tuned and interaction
conditions the normalized acceleration show a definite minima when
orientation of the secondary system is 45° with the major axes of the
primary system. For the other cases, the response quantities show a
definite maxima at this orientation.

Keywords: Primary and secondary systems; Non-classical damping;
Torsionally coupled system; Multi-support excitation; Bi-directional
excitation

1. Introduction

In many civil and industrial structures, secondary
systems (such as piping, fixtures, equipments etc.) are
supported on more than one point over the heavy primary
system (P-system). Several studies have been made for
the evaluation of both deterministic and stochastic
responses of composite primary-secondary system
(PS-system) [1-5]. The composite characteristics of
such systems don’t match with usual structures, and
traditional methods used for the analysis of classically
damped structural systems, are not applicable [6, 7].
Analysis of such structural systems without considering
interaction between the primary and the secondary
structural systems, is easy and economical [8]. However,
this analysis gives incorrect responses of the secondary
system (S-system) when the S-system is not very light as

compared to the supporting P-system, and when the
frequency of vibration of the S-system matches with one
of the dominant frequencies of the supporting structural
system. In such situations, responses of the S-system,
calculated by considering the interaction between the
PS-system give more realistic responses of the S-system
[9,10,11].

Two methods are generally employed for the analysis
of cascaded sub-systems (without considering interaction
between the two sub-systems): the cross-floor response
spectra method [12, 13], and mean square response method
for zero mean Gaussian input [ 14]. In the first method, the
floor response spectra of the primary structural system at
the multiple support points of the secondary one, are used
as input to the S-system. In the second method, the
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response is evaluated for individually classically damped
sub-systems, and the response of primary structural
system is used as input excitation to the secondary one.

Burdisso and Singh [15] studied response spectrum
method for the analysis of the multiple supported second-
ary structural system using cascaded approach. The
earthquake excitations to the P-system were considered
in the form of ground response spectra, and the floor
spectra of the P-system were taken as input to the
S-system. The floor response spectra were defined in the
form of auto and cross pseudo-acceleration response
spectra. The analysis of multiple supported secondary
structural system using the component-mode synthesis
approach was presented by Muscolino G [16]. The main
purpose of his study was to write the dynamic equations
of motion of the composite systems correctly, and to
reduce the modal dynamic equations of motion. Falsone
et al [17] also analyzed the combined system using the
same approach. Both of them assumed that the S-system
is cascaded with the primary structural system.

The studies mentioned before, investigate the effect
of different parameters on the responses of the S-system,
for the torsionally uncoupled P-system to uni-directional
ground excitation. These studies are strictly valid for
symmetric buildings or buildings with very small
eccentricity or buildings torsionally very stiff. Some
investigations on torsionally coupled PS-system are
done by Yang and Huang [18, 19]. They found that the
torsional coupling of the P-system has significant effect
on the response behavior of the S-system under random
ground excitation. Recently, Agrawal and Datta [21]
studied the behavior of the S-system (a single degree of
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freedom system), mounted over torsionally coupled linear
P-system. They [22] also studied the behavior of the
S-system mounted over torsionally coupled non-linear
P-system. In both studies, interaction between the
PS- system is considered.

In the present paper, the response behavior of the
multiple supported S-system, mounted over the deck of a
3-D torsionally coupled linear P-system, is studied for a
bi-directional random ground excitation. Responses are
calculated using the frequency domain spectral analysis
and by considering and ignoring the interaction between
the primary and the secondary systems. The correlated
inputs to the multiple points of the S-system, are defined
in terms of the power spectral density function (PSDF) and
cross PSDF [23]. Objectives of the investigation are:

i To study the response behavior of the multiple
supported S-system under different important
parametric variations; and

il To investigate the effect of interaction between the
PS-system on the behavior of the S-system.

2. System Model

The system model of primary and multiple supported
secondary structural system is shown in Figure (1).
The P-system is idealized as a 3-D torsionally coupled
system. The axial stiffiness of both horizontal (beam) and
vertical (column) elements of the S-system are assumed
to be very high. The normalized eccentricities of the
P-system are varied to provide various degrees of torsional
coupling in the P-system.
Let K, (i =1,4) be the lateral stiffness of the

Multi-Suppoited
Secondary
System

Flexible
Members

Primary System

Col 2 Ugx i
ay Col 4
R Ly
Col3
ELEVATION

Figure 1. Structural Model.
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column of the P-system, then the total stiffness of the
P-system in both directions (X and Y) is given by

(1)

The total stiffness of the S-system in the direction of
orientation of S-system is given by K ;, which is the total
sum of the lateral stiffness of all the columns of the
S-system.

Let 7, denote the distance of the i resisting
element from the center of mass (CM) of the P-system,
then the total torsional stiffness of the P-system, defined

about the CM, is given by

2)

in which it is assumed that the torsional stiffness of the
individual column element is negligible. The eccentricities
(epx and epy) of the P-system (the distance between the
center of resistance (CR ) and the CM), in the two
orthogonal directions is given by

4
z:lel'xl
Cre )
ZKpi
i=l
4
ZKpiyi
€y = [=14 &)
4
=K,

in which x, and y, are the X and Y coordinates of the
i™ column with respect to the CM of the P-system.
Eccentricities of the S-system (e and esy) are taken to be
variables for the parametric study. The two uncoupled
frequency parameters of the P-system are given by

)
and
@ = mljzz ©)
and natural frequency of the S-system is given by
e @)
m

in which 7 , and m are the masses of the primary and
the secondary structural systems respectively, and R is
the radius of gyration of the primary mass (distance
between center of resistance (CR) and (CM). The
frequencies ®, and wg may be interpreted as the natural

frequencies of the P-system, if they were torsionally
uncoupled, i.e. a system withepx and €, = 0,butm,, K »

and K g are the same as those in the coupled system. The
mass ratio P is defined as The values of
K, and m, are varied to provide different values of the
frequency parameters (®, and ) in the analysis. All
these parameters are taken to be the same in both X and ¥

directions.

3. Equations of Motion for the Combined
System

The equation of motion for the combined PS-system may
be written as

M U K K =~ 10 . 3= @) (8)

wherethe displacementvector {U }isgivenby {U }= {% "
U,pysUgsU 5 U1, Ugeas ooy Uy § T and the ground
acceleration vector is given by {U,; }= {U,..U, } .
The matrix [ K ] is calculated by condensing out the
rotational DOFs of the S-system from the global stiffness
matrix [K ]. The matrix [K ] is given as

IKA I NDF xNDF —

[KAH ]3x3 [KAlz ]3><(NDF—3)

(&)
[KAZl ](NDF—3)><3 [KAZ2 ](NDF—3)><(NDF—3)

in which the [K 11] is given as

2K, +2 Kycos6
[Ki]= 0
ZKpiypi +2. Kycos 6 y;
0
2K, +2Kysin®
ZKpl-ym- +2 K, sin 0x,

(10)

2 K iy pi +2.Kcos 0y,
2K ,ix 420 Ky sin 6 x;

Ko+ K,cos 0y +Y K, sin0x;j
the matrix [[f 5] 18 the submatrix corresponding to the
d.o.fof the S-system and the matrix [K,,] (=[K,,]7)is
the coupling matrix between the primary and the second-
ary systems. The condensed stiffness matrix [K ] is given
by

[Kll ]3><3 [K12]3><(n—3)
[K ] =

(11)

(K2 ](n—3)><3 (K5, ](n—3)><(n—3)
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in which n = NDF - NSN; NDF is number of d.o.f.; and
NSN is number of nodes (supports) in the multiple
supported S-system.

The influencing coefficient [/ ], mass [M ] and damping
[C ] matrices are given by

o[ OTo !

P01 001 L (12)
(311155 [o]

M}, =

L= U o] 0
[C11]3><3 [0]

Cln =

[ ]n |: [0] [CZZ](n—3)><(n—3) (14)

where [M ;] and [M ,,] are given as

[M1=diag[m ,,m,,m,R"] (15)

M y,]=diag [m,,m ,mg,....] (16)

The elements of the matrices [C,;] and [C,,] are
calculated by assuming that the damping matrix of the
P-system (for [C,,]) and the S-system (for [C,,]), are
proportional to their mass ([M ;] and [M ,,]) and
stiffness ([K ;] and [K ,,]) matrices. Using the modal
damping ratio and first two undamped mode shapes of the
primary and the secondary structural systems, the elements
of the damping matrices [C] ([C,;] and [C,,]) are
obtained by standard procedure [24].

4. Equation of Motion for Cascaded System

The equation for the P-system (only) to random ground
excitation is given by

M, 1{U 3} +[C, 11U ,}+[K , 1{U , } =
the vector {U,} is givenas {U,}={U,,U,,,Us},

and the matrices [/, .[M , ],[C , ] are given as

[[]_100T
PPlo 10

(18)
[M ,1=diag[m ,,m,,m,R*] (19)
Zcpi 0 Zcpxe
[Cp]= 0 Zcpi Zcpye (20)
Zcepx Zcﬁpy Ce

and
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2K, 0 2K,y
[Kp]: 0 ZKpi ZKpixi @1)

TKpuyi ZKpx; ZK,@i+y])
where C,;, 2°C,,,5(=2Cg,, ), Cg are the elements of
the damping matrix for the P-system and i =1, 2, 3, 4.
These elements are calculated in the same manner as
described for the interaction case.

The equation of motion for the multiple supported

S-system, for no-interaction case is given as

M UG +C, MU 3 +K U ) =

_[Ms][ls]{Up}:fc(t) (22)

where the matrices [M ,],[C,] and [K ] are the mass,
damping and stiffness matrices for the S-system, and are
represented by [M,]=[M ] (Eq. (13)); [C,]=[C ]
(Eq. (14)); and [K ;] =[K 5,] (Eq. (11)). The displacement
vector {U }isgivenby (U} ={U .U, 1,U o2, U 0,
....... Ugn )", The resultant of the input floor accelera-
tion vector {U »} at various supports of the S-system is
given by

{Up}NSN X1={Up1’Up2’Up3’ """" }T (23)

The equation of motion for a multiple supported structural
system, which is subjected to random ground excitation is
given as [25]

8 [Mg]]{{U” }}+[[cs] [cg]]{{Usf}}+

U, U,

U,
[[KS] (K,] ]{{{Uéj i} =0.0 (24)
P

in which the motion vectors have been partitioned to
separate the response quantities from the input, and the
property matrices have been partitioned to correspond.
The coupling matrices that express force in the response
degrees of freedom due to motion of the support are
denoted here with the subscript g. From Eq. (24), the
correlation matrix [#, ] can be expressed as

[r,1=-[K, 17K ] (25)

Solving Eq. (24) and transferring all terms associated
with the input to the right side of the equation, the
following equation is obtained

[M, 14U} +IC, U 34K U ) = 26)
(M 0 1+ IM )1, 3 (C 1 1+ IC, 1)U, 3

From Eq. (26), it will be noted that there is no stiffness
term in the right side of the expression; it drops out
because of the definition of the quasi-static displacement
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matrix given by Eq. (25). Also, this relationship will
eliminate any effective input associated with a stiffness
proportional component of the viscous damping.
Consequently, Eq. (26) may be written in the approximate
form as

[Mb]{Ugj}-i-[Cs ] {U3]}+[K5 ] {Usj}:
~(IM 10 1+ ML 10 0 @)

The above equation (Eq. (27)), can effectively be used
for calculation of responses of the multiple supported
S-system.

5. Response Analysis
5.1. Combined PS-System

The frequency response function matrix H () for the
combined system is given by

H((x))=(—(x)2[M]+iC0[C]+[K])_1 (28)

IfS Uy is the power spectral density function (PSDF) of
the input excitation, which is modelled as a stationary
random process, then the PSDF matrix of the displace-
ment is given by

Sy, (@) =H (@) S, () H ()" (29)

where S, (w) is the PSDF matrix of f{(¢) and itis given by

Upy _Ue.xk

[S11]3><3 [S12]3><(n—3)

S (o
[S21](n—3)><3 [522](n—3)x(n-3):| Ug( )

(30)

Is; (@], {

the various elements of the [S ’ (co)] matrix is given as

(53] =diag| m}(Sr, (S, 1.0 | 31)
mpms(Sng) 0 0

[S12]: 0 mpms(S[/'gy) 0 (32)
0 0 0

[S5]=[S1,]" (33)

[S2]=diagmi(Sy, ).mi(Sy e miSy )] (34)

The relative displacement U ,x and absolute accelera-
tion U,y (for k™ support of the S-system whose
coordinates are (x,, y, ), obtained as (j =X, ')
Urxk :stk _pr _UeJ’k (35)

(36)

and

U

ajk = "sjk +Ugi (37)

The PSDFs of the relative displacements and absolute
accelerations (Su,, ,SU,},k and SU‘ajk i =X.Y ) are
given by
Sup = (38)

2
Supx +yiSug *Suy, +ykSUpXUe +ykSU9UpX

= Su, U, ~Su,u, T YiSuu, T YViSu,u,
Supe = (39)
Sy, +xi Sy, + Su, %Sy v, XSuu
- SUP},UW,{ - SUS},,{UR‘, X SUW,{UQ - kaUHUM
and
S TSvg TSvg TS0 400 TS0y (40)

The elements of the right hand side (RHS) of the
Egs. (38) and (39) can directly be obtained from the PSDF
matrix of the displacement of the combined structural
system. The elements of the RHS of Eq. (40) are derived as

SU‘sjk = 0)4SUSJ'/€ (41)
SU.sxlU.gx =H DS Uge (42)
Sty =HTDSy, (43)
Sy iy =HOD*Sy (44)

Uiy =H DSy, (45)

where H (6,1) and H (7,2) are the elements of the H (®)
matrix for the first support of the multiple supported
S-system. The elements of Eq. (40) for the other supports
of the S-system are calculated in a similar manner. The
variances of the response quantities (bending moment
(o} ) at first support of the S-system and absolute
acceleration (Glz'ja) of the first node of the S-system are
obtained as

+00
Sty = Sy, @do (46)
+00
oj =[S (Wdw (47)

where Sy, (0)) is calculated with help of power spectral
density function of relative displacement and rotation at
the first node and the cross power spectral density

JSEE: Summer 2001, Vol. 3, No. 1/ 17



A.K. Agrawal and TK. Datta

function between them.

5.2. Cascaded System

The frequency response function matrix ((x)), for the
P-system, for the cascaded system is given by

H (@)= (-0’ [M]+i o[Cy,]+[K ;] (48)

where the matrices [M ;][ C;] and [K ;] are given by
Egs. (15, 14 and 11, respectively). The PSDF of the input
to the S-system is given as

UkoaUko UieUko UmaUka
[ S ( )]3><3 UkaUla, UraUie Umolio (49)
UkoUme. UilUmo Umol me.

where £, [ and m are the support points of the S-system.
The elements of the [S ; (®)] matrix are given as

Svraties = T ISHTY (50)

Sppaty, = TS T (51)

etc.
where k and / are any two support points of the S-system.
The vectors {T', }{T;} etc. are given as

{T,}={cosa,cosa,sina,sind, (y,cos0+x,sina)}

(52)
{T;}={cosa,cosa,sina,sina, (y,cos+x,;sino)}
(53)
and the [S ] matrix is given by
lS J5x5 =
S S . S . S .. S o]
Upx UgeU p YpyUpx UgyU px UsU px
S S - A S
UpxUgx Ugr UpyUsgx UgyU g UeU g
S - S - S -
U pxU py UgxUpy Upy UgyUpy UsUpy
S - - S - S - S -
UpxUgy UgeU py UpyU py Ugy UgUygy
S S S o S S -
UpxUs ngUe UpyUs UgyUe Ug |
(54)

The elements of the [S] matrix are derived from the
following basic equation

pr l{gx
Upy = [Hp (0))] 3x3 Ugy (55)
Ue )34 0 )

The frequency response function matrix for the
S- system H (), is given by

H (@)= (~0*[Mpl+ia[Cyl+[Kpl)™ (56)
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where, the matrices [M ,,],[C,,] and [K ,,] are given
by Egs. (16, 14 and 11, respectively). The PSDF of the
displacement between the P-system and a specified
support of the S-system is given by

Su, (@ =H (@) S (o) H, ()" (57)
and the PSDF of the absolute acceleration S . (for the
specified support of the S-system) is obtalned as

St =Sv, ¥Su, Sv,0, tSu,u, (58)

where (S (ja) is the PSDF of the resultant of the floor
motion in the two orthogonal directions. The elements of
the RHS of Eq. (58) are obtained by the procedure
described previously. The variance of response quantities
of interest for the cascaded system are obtained as

+00
o4, = |Su,, (@do (59)

+00
2 = .
G, = | 8o, (@do (60)
-0
where SUMs (®) is calculated in the same manner as
described for the interaction case.

6. Parametric Study

A large number of parameters influence the responses
“RMS” value of the normalized absolute acceleration
(o3 /g o /g or o / g) at a specified node, and
the RMS value of bending moment (o), = oy, Or oy, )
at a specified support of the multi-supported S-system.
The important parameters, which predominantly influence
the behavior of the PS-system, are considered in the present
study. These parameters include the normalized eccentrici-
ties of the P-system (e, /R and e,,/R) in the two
orthogonal directions (X and Y); the uncoupled lateral
frequencies of the P-system (®,,) and the S-system ;
the damping ratios of the P-system (§,) and the
S-system the ratio of uncoupled lateral to rotational
frequencies (®, /®g) of the P-system; and the mass ratio
mg /' m, ofthe PS-system. Values of the other parameters
(held constant throughout) are ®, =3.0rad/sec, §, =
5.0%, &, =2.0% and R = 3.0 meters. Intensity of the
white noise input excitation is the same in both X and Y
directions, and is taken as 0.013m?/sec/rad. The time
history of ground acceleration is simulated from the
PSDF of white noise for a record length of 200 seconds.
The coordinates of the supports, see Figure (1), of the
S-system are (- 0.5, - 2.2), (0.5, - 1.8) and (1.5, - 1.4). The plan
area of the primary structural model is 6.0m x 6.0m. The
absolute acceleration at the top node of the first support
(- 0.5, -2.2), and the RMS value of the bending moment at
its base are taken as response quantities of interest for
the analysis.
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6.1. Effectof ¢ ,, /R and e, /R

Figures (2) to (5) show the variations of responses with
normalized eccentricities (e, /R and e, ,/R) of the
P-system. Both interaction and no-interaction cases are
studied for strong (@, / @ = 1.0) and weak (®,, / wg = 0.5)
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torsionally coupled P-system under tuned (@, /o, =1.0)
and untuned (@, /@, =1.5) conditions. For the weak
torsionally coupled P-system, the variations are the same
for both interaction and no-interaction cases. Further, the
responses are almost insensitive to the variation of
e, /R and e, /R. The acceleration response is more,
while the bending moment response is less for the
no-interaction case. The response behavior is the same
for both tuned and untuned conditions.

For strong torsionally coupled P-system under both
tuned and untuned conditions, the responses increase
with the increase in ¢, /R and e, /R, if interaction is
considered between the PS-system. However, the
responses decrease with the increase in €, /R and
e ,, / R under the tuned condition and remain insensitive
to the variation of e, /R and e, /R under the
untuned condition, if interaction is not considered
between the PS-system.

6.2. Effect of Primary-Secondary Interaction

Figures (2) to (5) and Figures (8) to (13) show the effect of
primary-secondary interaction on the responses. For
strong and weak torsionally coupled P-system under the
tuned condition interaction between the PS-system
(PS-interaction) provides higher (g;,) for all angle of
orientations. However, an opposite pattern of variation
in (o) is observed under the untuned condition. For both
strong and weak torsionally coupled P-system under the
untuned condition (oy /g) is found to be less if interac-
tion is considered between the PS-system. Such behavior
is also observed for weak torsionally coupled P-system
under the tuned condition.

6.3. Effect of the Ratio

Figures (6) and (7) show the effect of the mass ratio on the
(o-;a /g). For weak torsionally coupled P-system under
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tuned condition, the variation of the response with
€, /R ande ,, /R showsadefinite maximum for higher
mass ratios (m, /m, = 0.01 and 0.1). For the untuned
condition, however, no such peaks in the response are
observed, and the response increases non-linearly with
the increase in e ,, /R and e,/ R.

For the strong torsionally coupled P-system, the
variation of the (o3 /g) is insensitive to the variation
in e, /R and epya/ R, for both tuned and untuned
conditions. Further, it may be noted that the response

is more for smaller values of the m /m , ratio.

6.4. Effect of &

The variations of (o3, /g) and ( with &, are shown
in the Figures (8) and (9) under the tuned condition. For
the strong torsionally coupled P-system the responses
decrease with the increase in &, when interaction
is considered between the PS-system. For the weak
torsionally coupled P-system, the responses are
insensitive to the change in the &, if interaction is not
considered between the PS-system. However, for no-
interaction case the responses decrease with the increase
in &, for the strong torsionally coupled P-system.
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6.5. Effect of Angle of Orientation of the S-system with
X-X Axis

The variations of responses with the angle of orientation
(0) of the S-system with the X-X axis are shown in
Figures (10) to (13), for strong and weak torsionally
coupled P-system under both tuned and untuned
conditions, and for both interaction and no-interaction
cases. Under the tuned condition, variation of the
( shows a definite minimum when interaction is not
considered between the PS-system, see Figures (10) to
(12), for both strong and weak torsionally coupled P-sys-
tem. For all other cases, the variations show definite maxima.
The values of the maximum and minimum responses occur
around an angle of 45°, as it would be expected.

7. Conclusions

Seismic behavior of multisupport secondary structural
system mounted over a torsionally coupled linear primary
structural system has been investigated by considering
and ignoring the interaction between the primary and the
secondary systems. The primary structural system is
subjected to bi-directional ground excitation which is
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modelled as a white noise. The response quantities of

interest are the standard deviation of bending moment at

a specified support and the normalized acceleration at a

specified node of the multiple supported S-system. The
responses are obtained by frequency domain spectral
analysis. The findings of the parametric studies lead to
the following conclusions:

7
0.0

Responses of the S-system decrease with the
increasein €, /R and € ,, /R ratio, for strong
torsionally coupled P-system, under both tuned and
untuned conditions. For other cases, responses are
either insensitive to or increase with the increase in
€, /R and e, /R ratio.

For strong torsionally coupled P-system under both
tuned and untuned conditions, the responses are
more if interaction is considered between the PS-
system.

For weak torsionally coupled P-system the
responses are found to be more if interaction is not
considered between the PS-system.

For all cases, the tuned condition gives higher
responses as compared to the untuned condition.
The responses of the S-system decrease with the
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increase in the mg /m , ratio. For weak torsionally

p
coupled P-system, the variation of responses with
e, /R and e, /R show a definite maximum
for the higher m  /m , ratio under the tuned
condition.

< The responses of the S-system generally decrease
with the increase in &,.

< For strong and weak torsionally coupled linear P-
system under the tuned condition, the normalized
acceleration of the S-system is found to be mini-
mum if orientation of the S-system is 45° with the
X-Xaxis when interaction between the primary and
the secondary systems is considered. For all other
cases, the response quantities are found to be maxi-
mum for the above orientation of the S-system.
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