
Vol. 21, No. 4, 2019JSEE

Available online at: www.jseeonline.com

Butterfly dampers dissipate energy through the flexural, shear, or axial response of
the strips when the device is subjected to inelastic cyclic deformation. The buckling
response, elastic stiffness, and cyclic performance of non-uniform steel butterfly
dampers have been studied in this paper. Validated material and geometric nonlin-
ear finite element models in the ABAQUS has been used to perform a comprehensive
parametric study on a wide range of geometrical parameters to evaluate the
response of non-compact butterfly dampers. The results showed that although the
low-cycle-fatigue response of butterfly dampers can be improved by altering the side
edge shapes, the buckling capacity and elastic stiffness of non-uniform strips would
decrease in comparison with uniform ones. Hence several analytical equations were
provided to quantitative prediction of the buckling capacity and elastic stiffness of
butterfly dampers
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ABSTRACT

1. Introduction

The utilization of energy dissipative devices re-
presents a common strategy to protect structures
against seismic excitations. Energy dissipating devices
are not typically installed in the gravity load path of
the structures and are accessible after the earthquake
to be inspected for the possible local damages.
Replaceability of these devices would significantly
decrease the repairing cost of the whole structures
after the earthquake.

Among the most used hysteretic damper types,
butterfly dampers (BD) have been widely investi-
gated as an effective protection technology able to
provide large energy dissipation capacity, with the
possibility of easily controlling of both stiffness and
strength [1-2]. BDs generally consist of a set of
parallel metallic strips connected through a couple of
support plates (see Figure 1) and dissipate energy
through the flexural and axial mechanisms, when

subjected to in-plane deformation demands.
Ghabraie et al. [3] applied an optimization method

to optimize the shape of butterfly dampers to improve
the stress distribution. Maximizing the hysteretic
energy dissipated by the damper after one cycle of
displacement loading with a 10% drift amplitude was
the objective function. The experimental verification
showed that by changing the shape of strips from
uniform to an hourglass-shaped, the low-cycle-fatigue
response of samples, significantly improved. Xian et
al. [4] showed that the non-uniform BDs are expected
to initiate yielding at the quarter points, midway
between the wider ends and reduced middle section
and are capable of full hysteretic behavior up to
0.3 rad shear angle over the link length with the
expense of lower initial stiffness and a pinched
cyclic response. Lee et al. [2] proposed non-uniform
steel strip dampers to improve the fatigue response.
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The proposed dampers showed excellent cyclic
performance. The structural characteristics such as
elastic stiffness, cumulative ductility, and energy
absorption were evaluated. According to the test
results, the alteration of the side edges and mid-width
in strips, affects the ultimate capacity, ductility, and
stiffness of the strips [5].

The effect of altering the geometry of steel strips
on the low-cycle-fatigue resistance and ductility of
yielding dampers has been a subject of interest
of many other researchers during the past de-
cade [3, 6,7]. Although the results suggest that it
may be possible to provide more uniform plastic strain
distribution along the yielding devices such as BDs
by changing the edge shapes, removing materials
from the original uniform strips could have a nega-
tive effect on the buckling response and elastic
stiffness of strips. Furthermore, a pinched hysterics
response can be anticipated in the case of non-
compact, non-uniform BDs.

In this study, a set of empirical equations are
proposed to predict the initial elastic stiffness and
buckling capacity of butterfly dampers. For this aim,
first, a detailed finite element model was created to
accurately capture the cyclic response of a butterfly
damper sample against past experimental studies [4]
to evaluate the effect of non-uniform edge shapes on
the response of BDs. Following that, a sensitivity
study is performed to ensure that the results are not
mesh-dependant. More than 10,000 FE models with
random non-uniform shapes and 180 single strip FE
models with uniform shapes were also analysed to

Figure 1. Butterfly damper: (a) with non-uniform strip shape (b): with uniform strip shape. (c): Finite element model of a single strip
butterfly damper.

study the buckling response and elastic response of
non-uniform single strips. The cyclic response of uni-
form and non-uniform single strip models was also
evaluated in terms of pinching response.

2. Finite Element Modeling

The nonlinear analyses in this study have been
carried out in ABAQUS/Standard. The FE model
details such as mesh density, element type, and
boundary conditions are shown in Figure (2). The
experiment results carried out by Xian et al. [4] on a
butterfly damper  (B09-56 sample), have been used
in order to verify the finite element models. The
geometrical dimensions (in mm) for the B09-56
sample as well as the test setup are shown in
Figures (2a) and (2b). The material characteristics
based on measured results from coupons test
(Plate C), provided in [4], was used in the FEM
analysis. The engineering yield stress and ultimate
stress of material were about 347 and 435 Mpa
respectively and the ultimate strain was about 18%.
The AISC341-05 [8] loading history for link-to-
column connections in eccentrically braced frames
with minor modifications was adopted in the test.
A mesh refinement analysis was also conducted to
ensure that the results converged on an accurate
solution. The B09-56 model was analyzed with
different mesh sizes ranging from b/5 to b/40.
Figure (2e) shows the incremental change in the
maximum value of equivalent plastic strain (PEEQ)
observed along the B09-56 model when the initial
cracks appeared in the corresponding test sample, as
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Figure 2. Comparison between experiment and FEM results: (a) The geometrical dimensions (in mm) of B09-56 specimen. (b): The
test setup configuration. (c): Finite element details of the B09-56 model. (d): different mesh densities that were considered in the
mesh density analysis. (e): Element size versus incremental change in PEEQmax. (f): Comparison of cyclic response of B09-56
specimen and FE model created in this study.

was reported in [4]. As shown, by taking a mesh size
equal or smaller than b/20, no significant variation
observed in the plastic response of model.

The finite element model was composed of S3R
shell elements, with a maximum element size of 3
mm (about b/20). Initial geometric imperfections
were explicitly incorporated in the SSBD numerical
models to mobilize the buckling response of the
yielding plates [8]. A global geometrical imperfection
associated with the first local buckling eigen-mode
with an amplitude equal to one percent of the sample
height (3.5 mm) was included in the finite element

model. More details of the experiment are presented
in [4]. The cyclic response of the sample observed in
the experimental test and FE models at the end of
prescribed loading are compared in Figure (2f).
Comparisons of the responses of the analytical
models and the experimental results have shown that
the utilized finite element model successfully captured
the load-deformation response of the butterfly
damper.

Xian et al. [4] showed that the number of strips in
BDs does not have a major impact on the normalized
behavior of BDs. Hence, in order to reduce the
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computational costs, the finite element process in
the parametric study in this paper is carried out on
the single strip butterfly damper (SSBD) models as
is depicted in Figure (3a). Other FE details, includ-
ing material properties, boundary conditions, and
initial geometric imperfection were similar to the FE
model which was generated in the validation study
(Figure 2c).

3. Geometrical Parameters of the Butterfly
Dampers

In this study, two groups of FE models were
generated. The first group of FE models consisted of
24 basic Single Strip Butterfly Damper (SSBD)
models with four different heights (h) and six aspect
ratios (h/b) and constant plate thickness equal to
6 mm as are presented in Table (1). More than 10,000
random models created based on basic models with
a few geometrical restrictions to avoid the genera-
tion of unreasonable non-uniform shapes during the
finite element updating process according to non-
uniform shapes suggested in [7, 9, 10].

Each strip is assumed doubly symmetric with
respect to the center of the plate and an upper bound
for the coordination of control points ( iX  based on
Figure (3a)), equals to 0.45 percent of strip width

Figure 3. (a): Restrictions applied to the geometry of non-uni-
form single strips (b): Loading history for finite element updating
analysis (FEMA- 461).

Table 1. Geometrical parameters of basic models with non-
uniform shape (group 1).

(0.45b) is also considered. In order to prevent jagged
boundary lines in the resulted shapes, the 1( )i ix x+ ≥

is also added to the finite element updating restric-
tions. A schematic figure from non-uniform strips and
the imposed restrictions are depicted in Figure (3a).
The FEMA-461 [11] loading history (See Figure 3b)
employed to evaluate the accumulated damage due
to cyclic loading with incremental amplitudes.
According to Figure (3b), o∆ is the lowest damage
state amplitude and conservatively considered equal
to 0.1 % in this study, which is much less than the
yield or buckling deformation of SSBD models. Each
increment consists of two cycles and after each
iteration of loading, the displacement amplitude was
increased by a factor of 1.4.

According to the previous studies [7, 12, 13, 14],
although BDs are capable of providing substantial
ductility and energy dissipation, they are prone to
buckling as a major limit state. In order to determine
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Table 2. Geometrical parameters of supplementary SSBD FE
models with uniform edges (group 2).

the elastic buckling response of SSBD models with
uniform edges, in the second group of FE models,
180 supplementary FE models with uniform edges
were also created due to the lack of enough uniform
SSBD models during finite element updating process
carried out on the FE models in the first group. The
height of complementary models was between 100
to 500 mm with the 100 mm intervals. Other geo-
metrical properties of complementary FE models
such as (h/t), (b/t), (h/b) are summarized in Table (2).
The results obtained from the random non-uniform
(group 1) and uniform (group 2) models were used to
study the effect of non-uniform edge shapes on the
response of BDs.

Hedayat [15], proposed a set of tri-linear com-
pactness limits based on a comprehensive FE study,
for maximum allowable overall slenderness (h/t) and
overall aspect ratio (h/b) in term of cross-sectional

Figure 4. Slenderness status of samples base on the slenderness relationship proposed in [15]. (a): FE models in group 1. (b): FE
models in group 2.

aspect ratio (b/t) to avoid buckling in BDs as shown
in Figure (4a). The compactness of FE models in
groups 1 and 2 are presented in Figures (4a) and (4b)
respectively. According to Figure (4), except for FE
models with 90 mm in height (SL 90 group) in the
first group, the others are non-compact.

4. Results
4.1. The Buckling Response of BDs

The critical shear buckling stress ( )crτ  of a plate,
subjected to edge shear can be expressed by
Equation (1).

( ) ( )
2

2 212 1 

s
cr

k E
h t

π
τ =

− ν                                           (1)

where ks is the buckling coefficient, depending on
the plate geometry and edge conditions, E is the
elastic modulus of material, ν  is the Poisson's ratio,
h is the plate height and finally, t is plate thickness
(see Figure 1). Although several studies [16-17] has
been carried out on buckling response of shear
panels (with an aspect ratio, (h/b)<1), relatively little
research has been carried out to assess buckling
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behavior of butterfly dampers and even less on the
buckling response of BDs with non-uniform edges.
The Effect of axial demand due to gravitational
loads on the buckling response of strips was not
considered in this study.

The buckling coefficient of uniform strips, , ,uniform
S SSBDk

obtained from FE models for uniform SSBD models
(group 2 of FE models) are presented in Figure (5).
As shown, the ,

uniform
S SSBDk  values are inversely corre-

lated with (t/b) and (b/h) parameters. According to the
results, a regression analysis has been conducted to
propose an empirical equation for reliable estimation
of , .uniform

S SSBDk  The observed correlation between ,
uniform
S SSBDk

and key parameters can be explained by Equation (2).
The C1 and C2 variables in Equation (2) can be
expressed with second-order polynomial relationships,
which take into account the influence of (t/b) and
overall aspect ratio (b/h) respectively. The minimum
R-squared (R2) value and average error between FEM
results and the values obtained from Equation (2)
were 0.9996 and 0.4% respectively.

, 1 2 3
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Figure 5. The buckling coefficient of single strip SSBDs with
uniform side edges.
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In Figure (6), the ratio of buckling coefficient ob-
tained of SSBDs with random, non-uniform edges,

, ,non uniform
S SSBDk −  and the ,

uniform
S SSBDk  obtained for uniform

SSBDs (Equation 2) are plotted versus the  XN.A which
can be defined as the normalized average coordina-
tion of control points with respect to strip width
(XN.A / .iX N b= ∑  according to Figure 3a). The XN.A

can also be presented as the ratio of the area of
removed parts to the area of corresponding uniform
strips.

As shown in Figure (6), the , ,/non uniform uniform
S SSBD S SSBDk k−

ratio exhibited a strong linear correlation with XN.A

which can be expressed as follows:

( )
, ,

. , .2.308 1.0503 0.4

 

 

non uniform uniform
S SSBD S SSBD

uniform
N A S SSBD N A

k k

X k X

− = ×

− + ≤ ≤             (9)

The average difference between Equation (9) and
the FE results was about 4%. The existing error is
largely due to the fact that although variable XN.A

seems to be an appropriate, easy to compute vari-
able; however, the XN.A does not necessarily represent
the shape of the strips. In other words, different
curves can be assumed with different buckling
behavior but with the same XN.A. Finally, according to
Equations (2) and (9), for a conventional BD with
arbitrary strip shapes (see Figure 1a), the buckling
strength (Pcr) can be expressed by the Equation (10).

Figure 6. The ,
non un iform

S SSBDk − value for non-uniform single strip SSBD.
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The geometrical variables are defined in Figure (1).

( ) ( )
2

,
2 212 1

non uniform
S SSBD

cr

k E
P mbt

h t

− π
=

− ν                                      (10)

4.2. Elastic Stiffness of BDs

Similar to the procedure previously used to study
the buckling response of BDs with arbitrary non-
uniform edge shapes, the elastic stiffness of uniform
SSBDs was first studied using the results obtained
from uniform FE models, and then the elastic stiff-
ness of uniform models was generalized to BDs with
non-uniform side edges based on the results obtained
from random non-uniform FE models.

To establish an analytical expression for elastic
stiffness of SSBDs with uniform edges 0,( ),uniform

SSBDk  the
stiffness can be described in the form of Equation
(11) where 0,

uniform
Nk  is normalized stiffness of uniform

SSBD and can be expressed by a quartic polynomial
expression, achieved by regression analysis. The
R-squared and average errors are 0.993 and 1%
respectively. The 0,

uniform
Nk  trend with respect to the

(h/b), obtained from uniform SSBD, FE models is
presented in Figure (7a).

0, 0,
uniform uniform

SSDS Nk k Et=                                               (11)
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       (12)

As is shown in Figure (7b), the reduction in the
elastic stiffness of SSBDs with non-uniform

0,( )non uniform
SSBDk −  compared with elastic stiffness of uni-

form SSBDs 0,( )uniform
SSBDk  showed a linear correlation.

A bilinear analytical expression is utilized to consider
the effect of non-uniform edge shape on the elastic
stiffness of SSBDs according to Equations (13)
and (14).

( )
. 0,

0, . 0,
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According to Figure (1a), considering the number

Figure 7. (a) Elastic Stiffness of single strip BDs with uniform
side edges. (b) The ratio of elastic stiffness of non-uniform
strips to those of uniform strips.

of strips equal to m, and the width and height of
support plates equal to B and (H-h)/2, respectively,
the elastic stiffness of an arbitrary BD can be con-
sidered as shear stiffness of two supporting plates
in series with total stiffness of strips. Finally, the
initial elastic stiffness of an arbitrary BD with two
supporting plates at both ends 0( )BDk  can be ex-
pressed as follows:

0

0,

1
1 ( )

BD

non uniform
SSDS

k H h
GBtmk −

=
κ −

+                       (15)

where G is the shear modulus of material and κ is
the shape factor of a rectangular section for shear
deformation and is equal to 1.2.

4.3. Hysteresis Response of Non-Uniform Models

Figure (8) shows the hysteresis responses for
four uniform and corresponding non-models with
different h/t and h/b ratios. The non-uniform models
are selected among 10,000 random models created
in the first group of FE models which showed the
highest ductility and energy dissipation capacity
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among the random models.
As shown, the stiffness and ultimate strength of the
non-uniform models decreased by removing plate
material. A more severe pinching in the hysteresis
curves of non-compact, non-uniform models is
evident in comparison with those of uniform models
as a result of premature buckling of non-uniform
models. Although the pinching is commonly recog-
nized as a factor in reducing the energy dissipation
capacity of structural yielding components, in cases
such as self-centering structures, the butterfly
damper s with pinched hysteresis and high low-
cycle-fatigue resistance could be functional to
preserve the self-centering capability [7, 14, 18, 19].

4.4. The Behavioral Mechanism of Slender, Non-
Uniform Strips

In the case of stocky BDs, the strips aspect ratio
provides an appropriate measure for explaining the
governing response of strips. In short compact strips
(h/b <1.3), shear yielding of the plate is found to be
predominant [20]. On the other hand, in long strips
(h/b >5), the behavior of the damper is governed
by flexural yielding [21]. However, for non-compact,

non-uniform BDs, the cyclic responses are not
necessarily similar to the stocky dampers while
significant pinched response observed in non-uniform
strips as depicted in Figure (8).

The cyclic response and buckle shape of strips
in B09-56 model, during the loading, are depicted in
Figure (9). According to the observations, at the
beginning of loading, prior to the occurrence of any
buckling or yielding, the strips deformed in a double
curvature (Figure 9a). The strips exhibited elastic
flexural response upon the shear deformations with
amplitudes less than 1.0 %. By increasing the de-
formation amplitudes, the first yielding of strips
occurred at the one-quarter of the strip height from
both ends (Figure 9b). By spreading the yielding to
the entire height of strips (Figure 9c), the stiffness of
strip suddenly dropped and consequently, severe
buckling occurred (Figure 9d). From this phase
onwards, as is evident in Figure (9-e), significant
pinching in tension excitations and strength degra-
dation in compression observed in the cyclic response
of the model. By developing hinges with low stiff-
ness and strength and occurrence of buckling, the
axial response of the central portion of the strip with
hinged ends governed the BDs response (Figure 9f).

Figure 8. Cyclic response of uniform strip and corresponding butterfly strip [7].
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Figure 9. Cyclic behavioral mechanism strips in non-compact
strips.

5. Conclusion

A finite element updating parametric study was
carried out to evaluate the buckling, initial stiffness,
and pinching response of non-uniform butterfly
dampers. The accuracy of the FEM was verified
and more than 10,000 random FE models developed
during the finite element updating process. The buck-
ling coefficient and initial stiffness of BDs with
uniform and non-uniform side edges were proposed
by a set of analytical expressions. The behavioral
mechanism of strips was also discussed in detail. The
main conclusions in the study are as follow:
v The buckling response of struts with fixed ends

is highly dependent on the overall and cross-
sectional aspect ratios as well as the relative area
of removed parts. The buckling coefficient of
BDs with uniform side edges was proposed with
second-order polynomial relationships which
take into account the influence of (t/b) and
overall aspect ratio (b/h) of strips respectively.

The minimum R-squared (R2) value and average
error between FEM results and the values
obtained by the proposed equation were 0.9996
and 0.4% respectively. The buckling coefficient
of non-uniform strips also exhibited a strong
linear correlation with normalized average
coordination of control points with respect to strip
width (XN.A).

v The elastic stiffness of single struts with fixed
ends is correlated with aspect ratio and the shape
of free, side edges. A quartic polynomial ex-
pression was proposed to predict the elastic
stiffness of BDs with uniform strips, based on the
FEM results. The R-squared and average errors
were 0.993 and 1% respectively. Similar to the
buckling coefficient of non-uniform strips, the
elastic stiffness of strips with non-uniform shape
compared with elastic stiffness of uniform strips
showed a strong linear correlation.

v The ultimate response of non-compact, non-
uniform strips, after the occurrence of buckling,
was mainly governed by axial response of strips.
Hence, the cyclic response of non-compact
butterfly dampers is generally associated with a
high pinching.
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