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ABSTRACT: A formulation for the response of the secondary
systems subjected to multicomponent earthquake acceleration has
been developed, using the random vibration theory. The method
accounts for interaction between the primary and the secondary
systems as well as the nonproportionality of the combined primary-
seondary system damping. The required formulations for the
calculation of the autocorrelation function, the power spectral density
function, the response spectrum and the critical angle have been
obtained. The formulation has been arranged in such a way that the
floor response spectrum can be calculated directly from the earthquake
response spectra of multicomponent input. The floor response spectra
of torsional frames subjected to average response spectrum of 20
earthquake records of Iran have been calculated. Variations of the
spectra to various structure parameters such as eccentricity, mass ratio,
and nonproportional damping have been studied. Results show that
for large eccentricities the effect of multicomponentness of earthquake
becomes important and can not be neglected.
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1. Introduction

For the modal analysis of important secondary
systems, it is common to generate the floor spectrum.
The floor spectrum defines the maximum absolute
acceleration response of a series of single degree of
freedom systems with different natural frequencies
and damping ratios, which are attached to the floor
under consideration. In the random vibration based
method, the spectral moments of the response of
floor is determined, and the floor spectrum is
calculated by multiplying its mean square by the
appropriate peak factor. Singh [1] used this method
and calculated the floor spectrum directly from the
design spectrum. In his method the input of the
secondary system was the response of the primary
system, so the interaction between the two systems
was neglected, and it was called decoupled (or
cascaded) analysis.

Although the decoupled analysis is acceptable in
most cases, but there are situations which results to

significant overestimation, particularly when the
mass ratio is not too small, and the frequency of
the secondary system is tuned to one of the
predominant frequencies of the primary system. To
incorporate the effect of the dynamic interaction
between the two systems in the seismic analysis, the
secondary system can be considered as a part of
the whole structure and analyzed the combined
primary-secondary system by a conventional
method. However, for light secondary systems, the
mass, damping, and stiffness matrices of the
combined system will have elements with much
smaller magnitude, which can cause numerical
instability in the dynamic analysis, resulting in the
numerical errors in the eigenvalue problem and
consequently on the response of the combined
system. Suarez and Singh [2] attempted to overcome
this shortcoming by presenting an exact approach to
determine the frequencies and mode shapes of the
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combined system. Because the mass of the secondary
system is usually small in comparison to the primary
system, it changes the dynamic properties of
the combined system slightly, so the perturbation
method become convenient to calculate the dynamic
properties and response of the combined system [3,
4, 5, 6]. Gupta and Tembulkar [7] studied the changes
in both the frequencies and the response of the
primary and secondary systems due to decoupling.

Another problem in the analysis of the combined
system is due to the different damping characteristic
of the primary and secondary systems, which results
to the nonproportionality of the damping matrix. Thus
the analytical methods for the combined system
must be able to consider this effect. Direct and exact
method for calculating eigenvalues and eigenvectors
of nonproportionally damped systems, according to
the state vector approach, has been developed by
Foss [8], and after that has been used by many
researchers [9, 10]. Recently, new approach has been
developed by the first author, which substantially
reduces computational time [11].

In the seismic analysis of the secondary systems,
earthquake motion is commonly idealized as having
a single horizontal component, while in the actual
case there exist six correlated components (three
translational and three rotational), which are felt by
structure [12]. The rotational components can be
expressed in terms of the spatial derivatives of the
translational components [13, 14]. Three translational
components of earthquake are generally correlated,
but it can be found an orthogonal set of axis such that
the translational components are independent along
these axes. Kubo and Penzien [15] called these axes,
the principal axes of earthquake. Wilson and Button
[16] assumed that the two horizontal spectrum of
translational acceleration component of earthquake
are linearly dependent and proposed a complete
quadratic combination method for evaluating the
response of structure under these components.
Ghafory-Ashtiany and Singh [14] considered all of the
six components and calculated the response of
structure using the random vibration theory. Lopez
and Torres [17] considered structure as three -
dimensional frame with rigid floor that subjected to
the two horizontal component of the earthquake, and
determined the critical angle and the maximum
response of the structure.

A review of the existing literature shows that little
attention has been directed toward the effect of
torsion of the primary system on the response of the

secondary systems. Yang and Huang [18] presented
a complete quadratic combination rule to calculate
the response of the secondary systems, which are
attached  to the torsional buildings, as well as the
effect of the base isolation system [19]. Bernal [20]
presented an example of a secondary system attached
to a torsional building.

In this paper the autocorrelation function, the
power spectral density function, and the floor
spectrum of the secondary systems, for which their
primary systems subjected to multicomponent
earthquake have been formulated. In the presented
method, the interaction between the two systems and
the nonproportionality of damping of the combined
system is considered. The input of the primary
system can be in the form of time history with
correlated horizontal and vertical components of the
earthquake, power spectral density function or
response spectrum of ground accelerations.
However, for the practical purposes, the formulations
are arranged such that the floor spectrum can be
calculated directly from the design spectrum at the
input level. Also the critical angle, i.e. the angle
between the axis of structure and the principal axes of
earthquake that produce maximum floor spectrum,
is calculated. In order to illustrate the applicability of
the method, torsional frames are considered and
parameters such as eccentricity, interaction, mass
ratio, and elevation of the secondary system from
ground, as well as nonproportional damping effect
have been studied.

To simplify the complex formulation for design
purposes, variation or sensitivity of each terms in the
formulation for different structural parameters have
been studied. The results of this study have been
presented in reference [21].

2. Formulation

Consider an N-degrees-of-freedom primary system
with a mass [Mp], damping [Cp], and stiffness matrix
[Kp], attached by a single degree of freedom second-
ary system with a mass (Ms), a damping (Cs), and a
stiffness (Ks), to its mth  degree of freedom, which
have been subjected to a multicomponent ground     ex-
citation, }.)({      txg′&&  The equations of motion of the com-
bined system become:
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Where {Y}= relative displacement response of
combined system and
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in which [Kc] and [Cc] are the coupling matrices
associated with the stiffness and damping matrices,
respectively, contain the stiffness and damping
coefficient of the secondary system in the mth and
N+1th element.
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In the present formulation it is assumed that the
earthquake has three translational correlated
components. Each row of })({     txg′&&  corresponds to an
acceleration component of earthquake along the
principal axes of the primary system, two horizontal
and one vertical axes [14, 15]. Also in Eq. (1), [rp]
and [rs] are the displacement influence matrices
(matrices whose elements are the displacements of
degrees-of-freedom of the primary and the secondary
system, respectively, due to a unit static  displacement
of the base of the structure in the directions of
earthquake) of the primary and secondary systems.
These matrices have three columns, each column
corresponds to one component of the earthquake.

The eigenvalue problem of Eq.  (1) in the case of
classical damped system is:

( [K ] + ω2
 [ M ] ) [φ] = [0]                                        (7)

where  ω and [φ] are the frequency and mode shape
of the combined system. For the light secondary
systems, the elements of  [K] and [M] matrices are
not of the same order, which might cause numerical

inaccuracy. To overcome this shortcoming the
following transformation has been introduced [22]:
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in which [φp] is the mode shape of the primary system
normalized with respect to its mass matrix and

.1 ss M=φ  Substitution of Eq. (8) into Eq. (7) gives:

( ) ]0[][][][ 2 =ϕω−         MK                                         (10)

where

][][][][ UMUM           
T =                                           (11)

][][][][ UKUK           
T =                                            (12)

The numerical inaccuracy of Eq.  (7) has been
eliminated through the above mentioned trans
formation, since all diagonal elements of the matrices
in Eq.  (10) are of the same order. However, two
sets of eigenvalue problems should be solved. First
for the primary system, and second the eigenvalue
Eq. (10).

Once the N+1 eigenvalues and eigenvectors of the
combined system are obtained, the equation of
motion, Eq.  (1), can be solved using the normal
mode approach with the help of the following standard
transformation:

{ Y } = [φ] {V}                                                   (13)

where {V} is the vector of principal coordinates.
Since [φ] is the normal mode shape of the system,
only the mass and the stiffness matrices could be
decoupled. Considering that the damping characteris-
tic of the primary and secondary systems are
different, the nonproportionality of damping matrix
is an inherent property of the coupled system. The
nonproportionality effect is particularly important for
the primary-secondary systems in tuning or nearly
tuning, with small values of mass ratio and large
differences in their damping constants. Substituting
Eq. (13) into Eq. (1) and premultiplying by [φi]  leads
to Eq. (14):
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where
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Cij = {φi}
T [C] {φj}                                          (15)

and
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Eq.  (14) is a coupled equation which can be
decoupled by using the state vector approach. The
state vector is defined as:
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By using Eq. (17), Eq. (14) can be written as:

}{][
]0[][}]{[}]{[ gxQZBZA    

   

   

             ′





γ−=+ &&&                          (18)

where





=



−=



= ][]0[

]0[]0[][][][
]0[][][][][

][]0[][ 2 IQ    O0   
IB    CI

IA
  

  

  

   

   

  

  

  

   (19)

where [Ω 2] is a diagonal matrix of combined
frequencies, and [I] is the unit matrix of order N + 1.
To solve Eq.  (18) by modal analysis, one should
find its eigenvalues and eigenvectors. The eigenvalue
problem of the Eq. (18) is:

(λ [ A  ] + [ B  ])[ψ]=[0]                                         (20)

Eq.  (20) gives 2(N+1) eigenvalues (λ) and
corresponding eigenvectors [ψ], which occur in the
pairs of complex and conjugate, due to negative-
definiteness of matrix [B ]. Using the expansion
theorem, the vector {Z} is written as:

{Z}=[ψ]{x}                                                    (21)

where {Z} is a vector of complex principal coordi-
nates. This vector is obtained by solving the Eq. (22):
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in which F al  corresponds to direction l  of the
earthquake.

The main response of the secondary system, which
is used for the generation of the floor spectrum, is the
absolute acceleration )(   sU&&  which can be written in
terms of its relative acceleration )(   sY&&  and the ground
acceleration component affecting it as:

}{][ gsss xrYU         ′+= &&&&&&                                                (24)

Using Eq .  (13), the relative acceleration of the
secondary system can be written as:
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Also by using Eqs. (17) and (21), we have:
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Obtaining ax&  from Eq. (22) and substituting it into
Eqs. (26), (25) and (24), sU&&  will become:
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Considering that the second terms in the right hand
side of Eq. (27) is zero, see Appendix (I), the absolute
acceleration of the secondary system will become:
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where superscript (*) means complex conjugate. Eq.
(28) forms the basis for the generation of floor
response spectrum. This will be used to calculate
the autocorrelation and power spectral density
function of the floor acceleration, which in turn is
required to define floor spectrum.

The autocorrelation function of the absolute
acceleration of the secondary system can be obtained
from Eq. (28) as:

                                                                      (29)

In this equation, there are four expected values
which can be obtained in terms of autocorrelation or
power spectral density function of ground accelera-
tion. Here, the first expected value in Eq. (29) will be
given as an example.
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To obtain the autocorrelation function xa, first we
need to solve Eq.  (22) for xa in terms of Duhamel
integral.

( )∑ ∫
=

τ−λ ττ′=
3

1
0

)()(
l

t t
glala

  

  
  dexFtx a   &&                               (30)

Using Eq. (30), E[xa(t1) xb(t2)] becomes:
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The relationship between the correlated accelera-
tions of earthquake along the principal axes of primary
system, },{   gx′&&  and the uncorrelated accelerations
along the principal axes of earthquake, },{   gx&&  is related
by the cosine direction matrix, [D], as [15]:

}]{[}{      gg xDx &&&& =′                                                   (32)

where the acceleration cross correlation function can
be written as:
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in which p and q corresponds to the cosine direction
of the principal axes of the earthquake. Since the cross
correlation between accelerations along the principal
axes of earthquake is zero, the Eq .  (33) can be
reduced to:
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Expressing the autocorrelation function of the
ground accelerations in the Eq.  (34), in terms of its
power spectral density function, and substituting it
into Eq. (33) and the result into Eq. (31), it becomes:
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Where SP(ω) is the power spectral density function of
the ground accelerations along the pth principal axes of
earthquake. For the stationary processes, the limits of
integrals in Eq. (35) can be extended to −∞  and , +∞
and after some algebric  calculation, the following is
obtained:
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Eq. (36) is the first used in the Eq.  (29). The other
expected values, which can be obtained in similar
manner, are as follows:
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Substituting Eqs.  (36) to (39) into Eq .  (29),
the total acceleration autocorrelation function
becomes:

With appropriate combination of the 1st and 2n d

terms, and the 3rd and 4th terms, and after some
algebraic simplification, Eq. (40) can be rewritten as:
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In which aH  and bH  are the complex frequency
function of the modes "a" and "b" of the combined
system, and the coefficients Ajkaln…, are defined in
Appendix (II). Eq.  (41) defines the autocorrelation
function of the absolute acceleration of secondary
system. The power spectral density function of this
response will be:
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This equation defines the power spectral density
function of the absolute acceleration of the secondary
system in terms of the modal properties of the
primary system, eigenproperties of the combined
system, and the power spectral density function of
the ground accelerations along the principal axes of
earthquake.

For the stationary processes, the mean square
response of the total acceleration of the secondary
system can now be obtained through integration of
the response power spectral density function, Eq. (42):
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Where I0p(ωa , ξa ) and I1p(ωa , ξa ), respectively,
represent the mean square values of the relative
displacement and relative velocity response of an
oscillator with frequency (ωa) and damping ratio (ξa)
excited by the ground motion in the p-direction. It is
a good approximation to suppose that the mean
square of the response are proportioned to the response
spectrum [23]; i.e.:
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In which Rdp(ωa, ξa) and Rvp(ωa, ξa), are respectively,
relative displacement and relative velocity response
spectrum of ground motions in p-direction, and PFd

and PFv are the respective peak factors. Also, the
root mean square values of the absolute acceleration
of the secondary system when multiplied by the
corresponding peak factor will results to its response
spectrum:
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Where )(2
ssU ,R

s
 ξω&&  defines the total acceleration

floor spectra. Introducing Eqs. (43), (44), and (45)
into Eq. (46), and assuming that all the peak factors
are equal [24], the following result is obtained:
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Where R dp (ωa,  ξa) is the pseudo-acceleration
response spectrum of ground motions in p-direction.
Eq.  (47) gives the relation for calculating floor
spectrum in terms of the cosine direction matrix [D]
between the principal axes of earthquake and the
principal axes of the primary system. That is, if the
elements of this matrix are known, one can calculate
the floor spectrum. It is known that for most of the
tectonic regions, the ground motion can act along any
horizontal direction; therefore, this implies the exist-
ence of a possible different direction of seismic
incidence that would lead to an increase of floor
spectrum. Thus for important secondary systems, the
maximum response associated to the most critical
directions of ground motions must be examined.

The presented formulation is general and can be
applied to any structure and any direction of
earthquake, but here for avoiding the complexity of
the formulation, the primary system is restricted to
torsional framed building with rigid floor that have
two perpendicular horizontal and one vertical degree
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of freedom. Also, the earthquake is considered to
have two horizontal and one vertical component. For
this case the direction cosine matrix will become:
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where θ is the horizontal angle between the principal
axes of earthquake and that of structure. Substituting
the elements of matrix [D] in Eq. (47) gives:

0css

cssU

                                                                                                                                                

    

RsincosRsinR
cosRR

s
 

+θθ+θ
+θ=ξω

)()()(
)(),(
2

22
&&

     (49)

where

[

]
[

]}),()(

),()(

),()(

),()(2

),()(),(

)(

2
22222

2
22222

2
11111

1

1

1

2
11111

2
22222

2
1

1111

11

1

1

1
11

bbajkabjkab

aaajkabjkab

bbajkabjkab

N

a

N

ab
aaajkabjkab

aaajkajkaaaa

jkajka

N

1a

N

j

N

k
k,Nj,Nc

  

  

  

   

    

    

 SDC        

 SBA        

 SDC        

 SBA        

 SBA        S

BA R
 

ξω+

+ξω+

+ξω+

+ξω+

+ξω++ξω





×+ϕϕ=

∑ ∑

∑∑ ∑

=

+

+=

+

=

+

=

+

=
++

       (50)

[

]
[

]}),()(

),()(

),()(

),()(2

),()(),(

)(

2
12222

2
22222

2
21111

1

1

1

2
21111

2
12222

2
2

1111

1

1

1

1
11

bbajkabjkab

aaajkabjkab

bbajkabjkab

N

a

N

ab
aaajkabjkab

aaajkajkaaaa

jkajka

N

1a

N

j

N

k
k,Nj,Ns

  

  

  

   

    

    

 SDC        

 SBA        

 SDC        

 SBA        

 SBA        S

BA R
 

ξω+

+ξω+

+ξω+

+ξω+

+ξω++ξω





×+ϕϕ=

∑ ∑

∑∑ ∑

=

+

+=

=

+

=

+

=
++

       (51)

[

( )]
[

( )

( )] }     

    

 

     

    

bbabba

jkabjkabjkabjkab

aaaaaa

N

a

N

ab
jkabjkabjkabjkab

aaaaaajkajka

jkajka

N

1a

N

j

N

k
k,Nj,Ncs

SS        

 DCDC        

SS       

 BABA         

SS BA        

BA R
 

),(),(

)(

),(),(

)(2

),(),()

(

2
1

2
2

21211212

2
1

2
2

1

1

1
21211212

2
1

2
21212

1212

1

1

1

1
11

ξω−ξω

×+++

+ξω−ξω

×+++

+ξω−ξω+



 ++ϕϕ=

∑ ∑

∑∑ ∑

=

+

+=

=

+

=

+

=
++

   (52)

[

[

]}),()(),(

)(2),(

(

2
33333

2
3

1

1

1
3333

2
3

3333

1

1

1

1
110

bbajkabjkabaaa

N

a

N

ab
jkabjkabaaa

jkajka

N

1a

N

j

N

k
k,Nj,N

     

   

    

SDC       S

 BA         S

BA R
 

ξω++ξω

×++ξω





×+ϕϕ=

∑ ∑

∑∑ ∑

=

+

+=

=

+

=

+

=
++

      (53)

Eq. (49) gives the floor spectrum as a function of the
angle of incidence (θ). The critical angle (θcr) is
defined as the angle of incidence that causes the
maximum floor spectrum which can be obtained
from the derivative of ),(2

sssU R ξω&& with respect to θ
and by setting it equal to zero, it becomes:

sc

cs
cr

  

 

  

RR
Rtan 
−

=θ )2(                                            (54)

This equation gives two roots for θcr , with 90o

difference, which defines the maximum and the
minimum values of the floor spectrum. It should be
noted that the critical angle depends on the character-
istics of the horizontal spectra and the horizontal
dynamic properties of the structure.

From Eq .  (52), it is known that if the two
horizontal ground spectrum are equal (Rcs= 0), then
θcr= 0, which indicate that the floor spectrum does
not depend on the angle of incidence. For this reason,
it is enough to analyze the typical case of θ = 0 in order
to determine the maximum floor spectrum. In other
words, if the two horizontal ground spectra are
equal, the value of Rc is an upper bound of floor
spectrum to any angle of incidence.

3. Numerical Results

To demonstrate the application of the presented
method and to illustrate the importance of the
multi-components of the earthquake, a 10-story
torsional structure is considered to obtain the floor
response spectra for various parameters. The
dynamic properties of the structure are shown in
Figure (1) and its natural frequencies in the case of
zero eccentricities and without interaction and
nonproportional damping effects are listed in Table
(1). It is assumed that the eccentricity of stories are
equal in both directions.

In the presented formulation, the seismic input of
the primary system can be time history, power
spectral density function, or response spectrum of
ground accelerations. In this example the average
response spectra of 20 earthquake with similar
characteristic, normalized to 1.0g, is considered as
input. The two horizontal spectra are shown in
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Figure (2). For this structure the effect of eccentric -
ity, floor number, interaction, nonproportional
damping, and point of connection of the secondary
system on the floor, on the response of the secondary
system subjected to multicomponent earthquake
have been studied. The floor spectrum is obtained for
these different inputs:
i) The multicomponent earthquake acted along

the critical angle and its response will be denoted
by R.

ii) The single-component earthquake acted along
the critical angle and the floor spectrum and its
relative difference with respect to R will be
denoted by R1 and e1, respectively.

Figure 1. Ten-story example structure.

Torsional Mode
Frequencies (rad/sec) 

Lateral Mode  
Frequencies (rad/sec) 

Mode 
Number 

9.655.571 
25.3914.662 
41.5523.993 
57.7233.324 
71.3841.215 
83.2348.056 
90.8352.447 

105.9361.168 
116.5367.289 
135.0877.9910 

 

Table 1. Frequencies of the symmetric structure.

Figure 2. Input ground spectra.

iii) The single-component earthquake acted along
the principal axes of the primary structure and
the floor spectrum and its relative difference
with respect to R will be denoted by R0 and e0,
respectively.
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3.1. Effect of Eccentricity

Figure (3) shows the floor spectra at 10th floor for
eccentricity ratios of 5, 10,  15, and 20%. The
damping ratio of both the primary and the secondary
systems is assumed to be 0.02, and the mass ratio is
equal to 0.05.  It is seen that as the eccentricity
increases, the response of the secondary system
and the difference between R , R1, and R0 will
increase. The increase in the tuning frequencies is

much larger than other frequencies. Thus, for
large eccentricities and in the tuning frequencies,
multicomponent effect should be considered.

3.2. Effect of Interaction

The most important factor in the interaction is the
mass ratio of the secondary system to the floor. In
order to study the effect of interaction, four different
mass ratios is considered and floor spectrum of floor

Figure 3. Effect of eccentricity.
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5 have been calculated and plotted in Figure (4). In
this case the damping ratio of both the primary and
the secondary system are 0.05, and the eccentricity
is equal to 15%. From Figure (4), it can be seen that
by increasing the mass ratio, the floor response
spectrum will decrease, especially in the tuning
frequencies. Therefore interaction will be important

for heavy secondary system and tuning frequency.
This conclusion is in agreement with other research-
ers, such as Igusa and Derkiuregian [9]. Also from
this figure it can be seen that by increasing the
mass ratio, the difference between R, R1, and R0
will decrease and the error of neglecting multi-
componentness of earthquake decrease.

Figure 4. Effect of mass ratio.
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3.3. Effect of Elevation of Secondary System from
Ground

Figure (5) gives a comparison of the floor response
spectrum and their respective differences in the first,
fifth and tenth floors. For these cases the damping
ratios of the both systems, the mass ratio, and the
eccentricity ratio are taken 0.02, 0.05, and 0.05,
respectively. It can be seen that for the higher
elevation the absolute and the relative difference
between R ,  R1, and R0 have been increased,
especially in the case of the tuning frequencies. The
average differences for “e1” are 6.3, 7.2, and 10.1%
and for “e0” are 8.1, 10.6, and 13.3% for the floors
number 1,  5 and 10, respectively. This means that
although the effect of considering multicomponentness
of earthquake is important for torsional buildings, but
it is more important at the higher elevation from ground.

3.4. Effect of Nonproportional Damping

In order to study the effect of nonproportionality
damping, the floor spectrum of the 10th floor with
mass ratio of 0.05 and eccentricity of 0.15 has been
obtained. The proportional as well as nonproportional
damping analysis have been performed and the
results are shown in Figures (6) and (7). In Figure (6),
the damping ratio of the primary system is
considered to be constant and equal to 0.05, while the
damping ratio of the secondary system varies as 0.02,
0.05, and 0.10. In Figure (7), the damping ratio of
the secondary system is considered to be constant
and equal to 0.05, while the damping ratio of the
primary system varies as 0.02, 0.05, and 0.10. Figure
(6) shows that the change in the damping ratio of
the secondary system does not affect its response

Figure 5. Effect of floor number.
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Figure 6. Effect of nonclassical damping, damping ratio of primary system is constant.

significantly. But Figure (7) shows that the increase
in the damping ratio of the primary system cause the
decrease in the response of the secondary system.
This proves that the response of the secondary
system is affected by the damping ratio of the  primary
structure rather than by the secondary system.

Figures (6) and (7) also show that the nonpropor-
tional damping analysis increase the response of the
secondary system, especially in the case of tuning
frequencies.

3.5. Effect of Point of Connection of the Second-
ary System on the Floor

The secondary system may be connected on a

location other than the center of mass of the floor as
it can be seen in Figure (8). In order to investigate
the effect of variation of the location of the
secondary system with respect to the center of
mass of the floor, the response spectrum of a
secondary system which installed on the 10th floor
with eccentricity of 0.01 has been obtained for
various ratios. The results have been shown in
Figure (9). A review of this figure shows that:
i) the response of the secondary system increases

as the ratio increases.
ii) the effect of multicomponent earthquake be-

comes more important as the ratio between their
spectra or spectral density function increases.
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Figure 8. Point of connection of secondary system to the floor.

Figure 7. Effect of nonclassical damping (damping ratio of secondary system is constant).
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Figure 9. Effect of point of connection of secondary system on floor.
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4. Conclusions

New formulation for the calculation of the floor
response spectrum subjected to multicomponent
earthquake is presented, which accounts for the
interaction of the primary and the secondary systems
and nonproportional damping which are inherent
characteristics of combined systems. The autocorre-
lation, power spectral density functions, and mean
square responses have been also derived. The two
horizontal and one vertical components of earthquake
is considered and the critical angle, which produce
the maximum floor spectrum, has been obtained. The
proposed method is efficient, since it generates floor
response spectrum directly from the multicomponent
ground response spectra. Numerical studies show that
the effect of multicomponent earthquake input is
important in the structures with large eccentricity,
light secondary systems and in the case of tuned
modes.
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Appendix I

Since the secondary system is the N+1th degree of
freedom of the combined system, the parenthesis of
the second term of Eq. (27) can be written as:
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If  [Q] from Eq.  (19) substitute in Eq.  (23),  [Fa ]
becomes:
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The lst element of [Fa] will be:
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The size of {ψa} is 2(N+1) by 1, which can be
separated into the upper and lower parts:
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where }{ u
a ψ  and }{ l

la ψ  are the (N+1) upper and lower

element of {ψ a}, respectively. Substituting this
equation into Eq. (I-3), Fal becomes:
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The matrix in the middle part of the numerator of this
equation is [A], therefore,
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Since the imaginary mode shapes have the orthogo-
nality and  independency conditions, any vector can be
expand in term of them. One can expand the vector
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Where β’s are the expansion coefficients which can
be obtained by substituting Eq. (I-8) into Eq. (I-7):
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Since the imaginary mode shapes are orthogonal with
respect to matrix [A], this equation becomes:
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The jth row of the Eq. (I-8) is:
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Substituting Eq.  (I-10) into Eq.  (I-11), and the
results into Eq. (I-1), it becomes:
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Now it will be shown that the parenthesis in the Eq.
(I-12) is zero. In the Eq. (16) the lst element of [γj] is:
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where {rpl } is the lth column of [rp], rsl is the ls t

element of [rs], and where .}{}{
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normal mode shapes have the orthogonality and

independency conditions, any vector can be expand in
term of them. One can expand the vector {r

l
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Where α’s are the coefficients of the expansion. The
N+1th element of {rl} is:
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Substituting Eq. (I-14) into Eq. (I-13) gives:
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By the orthogonality of the mode shape, the Eq.
(I-16) becomes:
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Since the mode shapes normalized with respect to mass

matrix )( jjl α=γ , Eq (I-15) becomes:
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Therefore, the parenthesis in the Eq.  (I-12) is zero,
and consequently the Eq. (I-1) become zero.

Appendix II

The coefficients Aj ka ln  and B jka  ln in Eq.  (41) are
calculated as:

AjkaIn = 4ajaI akbn                                                                                         (II-1)
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where:

ajal= Re (ψja Fal)                                              (II-3)

bjal= Im (ψja Fal  )                                               (II-4)

Also the coefficients Ajkab ln,…, Djkab ln in Eq. (41)
are obtained from the solution of following simulta-
neous equation:

[P]{A}={W}                                                 (II-5)

where

{A}T = [Ajkab ln   Bjkab ln   Cjkab ln   Djkab ln]                (II-6)
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in Eq. (I-8), the coefficients ,,   nl jkabnl jkab   
BA ′′  and nl jkab  

C′
are given by:
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