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This study proposes a new formulation for modeling soil-structure interaction (SSI)
problems. In this direct time-domain method, the half-space soil medium is modeled
by spectral element method (SEM) which is based upon a conforming mesh of
two-dimensional quadrilaterals, and the structural frame components are modeled
by finite element method (FEM). Formulation and various computational aspects of
the proposed hybrid approach are thoroughly discussed. To the authors' knowl-
edge, this is the first study of a hybrid SE/FE method for SSI analyses. The accuracy
and efficiency of the method is discussed by developing a two-dimensional SSI analysis
program and comparing results obtained from the proposed hybrid SE/FE method
with those reported in the literature. For this purpose, a number of soil-structure
interaction and wave propagation problems, subjected to various externally applied
transient loadings or seismic wave excitations, are presented using the proposed
approach. Each problem is successfully modeled using a small number of degrees of
freedom in comparison with other numerical methods. The present results agree very
well with the analytical solutions as well the results from other numerical methods.
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1. Introduction

The dynamic response of massive structures, such
as high-rise buildings and dams, may be influenced
by soil-structure interaction as well as the character-
istics of exciting loads and structures. The effect of
soil-structure interaction is noticeable especially for
stiff and massive structures resting on relatively soft
ground. It may alter the dynamic characteristics of
the structural response significantly. As a result,
these interaction effects have to be considered in
the dynamic analysis of structures in a semi-infinite
soil medium [1].

Although a huge number of investigations have
been conducted for soil-structure interaction analy-
sis, depending on the modeling method for the soil
region, all methods may be classified into two main
categories. One method, the so-called direct method,
evaluates the dynamic response of structure and
its surrounding soil in a single analysis step, by

subjecting the combined soil-structure system to a
dynamic excitation. Another one which is termed as
substructure method is based on the principle of
superposition and the analysis is performed in
several steps [2].

Various types of numerical methods such as
finite element method (FEM), boundary element
method (BEM), and hybrid techniques are commonly
used to model soil-structure interaction effects. The
use of FEM is advantageous as the procedures
are versatile in nature and well-established (see for
instance Refs.  [3-6] among others). This method
offers efficient advantages in the treatment of
various aspects of soil domain such as arbitrary
geometries, soil layering, material non-linearities,
anisotropies and inhomogeneities. Nevertheless, due
to its inherent difficulty in analyzing media of infinite
extent, the radiation boundary conditions at infinity
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have also been employed to overcome the problem
of wave reflection and radiation on the far-field
boundaries of the soil domain [7-10]. However,
FEM remains a “computationally expensive”
approach for elastody-namic and SSI problems [5,
11-13]. Apparently, one reason is that low-order
FEM exhibit poor dispersion properties [14], while
higher-order finite elements cause some troublesome
problems like the occurrence of spurious waves.

Alternatively BEM which satisfies automatically
the radiation boundary condition at infinity, requires
substantially reduced surface discretizations even for
3D problems, and is appealing alternative to FEM
for soil-structure systems [15-17]. However, BEM
obviously suffers from two disadvantages. The first
one is that although the coefficient matrix of the
system is much smaller than those of FEM, this
matrix is non-symmetric, non-positive definite and
fully populated. The second disadvantage is that
BEM is not appropriate in the treatment of material
nonlinearities, anisotropies, and inhomogeneities
of soil domain, and arbitrary complex half-space
geometries.

Coupling finite element and boundary element
methods retains the advantages of each method and
eliminates their disadvantages. Various coupled FE/
BE approaches have been suggested in the literature
for problems in dynamic and seismic analysis of
coupled soil-structure systems, see for example
Refs. [18-24].

Spectral element method (SEM) provides a
high-order technique, which allows obtaining the
same accuracy as low-order methods (such as
FEM) by using a reduced number of grid points, thus
giving rise to a significant efficiency in computational
resources. SEM, which enjoys all advantages of
classical FEM (e.g., well-suited to handle complex
geometries and nonlinear conditions), has been
benefited by special sort of interpolation functions.
These interpolation functions enable SEM to trans-
fer a wide range of wavelengths through elements
with higher accuracy and lower computational
efforts compared to classical FEM. SEM which
was originally introduced in computational fluid
mechanics [25] is currently being implemented in
elastodynamics problems, see for instance Refs.
[26-28] among others. Nevertheless, little efforts
have been achieved for the analysis of soil-structure
systems using SEM [29].

In the past decade, SEM, which is especially

appropriate for seismic wave propagation problems,
has experienced significant developments. As a
result, it seems that the soil-structure interaction
while including the wave propagation considerations
would be efficiently investigated by SEM. On the
other hand, structural system effects may be accu-
rately modeled using FEM. Consequently, a coupled
SEM-FEM approach seems to exhibit an attractive
and efficient tool for the soil-structure interaction
analyses.

In this study, a combination of SEM and FEM is
proposed for general two-dimensional analysis of
soil-structure interaction problems under dynamic
loading and elastodynamic problems. In order to
obtain an approach applicable to nonlinear problems,
a formulation that works directly in the time domain
is developed. Employing the well-known direct
method, the system is divided into a homogeneous,
linear elastic half-space that is modeled using SEM
and structural system, which is modeled by FEM.
Before combining these two methods, SEM is
verified by analyzing some example problems. The
results obtained are compared with those from the
literature. Afterwards, a soil-structure interaction
model is developed by coupling the two methods.
The coupled model is then applied to several
numerical examples to illustrate how the SE/FE
coupling may be achieved and how accurate the
results are. It is found that the results agree well
with the literature.

2. Problem Formulation

A numerical procedure based on the hybrid
formulation, which combines SEM for the half-space
soil domain and FEM for the superstructure is
developed in the time domain, see Figure (1).

2.1. Spectral Element Method Formulation

In the early 1980s, spectral element method
(SEM) was initially developed by Patera [30] in the
field of fluid dynamics. This method was further
developed and found many applications for modeling
seismic wave propagation, e.g. [26-28]. In this
section, a brief review of some important aspects of
SEM, in particular those that would be subject to
modification for their application to the coupled
soil-structure system are briefly presented.

SEM is based upon a weak formulation of
the equations of motion. This method combines the
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flexibility of a finite element method with the accu-
racy of a pseudo-spectral method. Consequently,
the SEM formulation process of stiffness and mass
matrices is analogous to the classical FEM formula-
tion. The main differences between SEM and FEM
may be summarized in three main aspects: the
polynomial degree of the basis functions, the choice
of integration rule, and the nature of the time-march-
ing scheme.

A crucial idea of SEM is adoption of specific
shape/basis functions which is illustrated here as the
first main difference between SEM and FEM. For
any given quadrilateral element, the relation between
a point displacement field ),( ηξu

r
within the element

and a nodal point in the master square may be
approximated as the following form:

∑
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where the local shape functions ),( ηξaN  are prod-
ucts of Lagrange polynomials, and au

r
 denotes nodal

degrees of freedom. Firstly, the degree ln  of the
Legendre polynomials has to be chosen. The )1( +ln
Lagrange polynomials of degree ln  are defined in
terms of )1( +ln  internal local nodes 11 ≤ξ≤− p ,

1,...,2,1 += ln     p . These local nodes are placed at
special positions called Legendre-Gauss-Lobatto
(LGL) points. These correspond, in a normalized 1D
situation [-1, 1], to the zeroes of ),(ξ′

lnP  the first
derivative of the Legendre polynomial of degree ,ln
and the extremes of the interval

}1,1{)}({  P of zeros n −ξ′ U
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Figure 1. Soil-structure media.

which means that one has )1( +ln   LGL points for a
polynomial of degree ln . By construction of a weak
form (similarly as in FEM), element mass and
stiffness matrices may be defined [31]. In other
words, instead of using the strong form of the
equations of motion, one can use an integrated form
(i.e., weak form such as weighted residual approach).
This is accomplished by weighting the equations of
motion with an arbitrary test vector (the variation of
displacement function is chosen here), integrating
by parts over the domain volume, and imposing
appropriate boundary conditions. To solve the weak
form of the governing equations, integrations over
the domain volume and boundary are subdivided in
terms of smaller integrals over the volume and
surface elements, respectively. Transformation to the
global coordinate system and the assembly process
are the same as in FEM. Finally, a wave propagation
problem is reduced to the well-known ordinary
differential equations, which can be written in a
matrix form:

FaKaCaM
rr&r&&r =++ ][][][                                      (3)

where [M], [C] and [K] are, respectively, the global
mass, damping and stiffness matrices, and F

r
 is a

vector of the time dependent excitation signal. The
global matrices are equivalent to the sum of integrals
over the set of the elements of the entire domain.
They are built through the assembly process of the
element matrices (direct stiffness method).

The second difference between SEM and FEM
concerns to the numerical integration of element
matrices. Let us consider the standard FE formulae
of element characteristic matrices as:
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in which [B] is strain-displacement transformation
matrix, [D] denotes material stiffness matrix, [N]
indicates shape function matrix, and ρ is the mass
density. Each of integrations over the elements eΩ
are usually calculated by Gauss quadrature in FEM.
In SEM, integrations may be approximated using
the LGL quadrature rule instead
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in which )(xf
r

 indicates the integrand components
of Eq. (4), pω  and qω  are the weights associated
with the LGL points of integration, and =)( pqe J

),( qpe    J ηξ  is the Jacobian of mapping from the
element eΩ  to the reference domain. To integrate
the functions and their partial derivatives over the
elements, the values of the inverse Jacobian matrix
need to be determined at the 2)1( +ln  LGL integra-
tion points for each element. The quadrature weights,
which are independent of the element, are determined
from the following equation:
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As a result of the Lagrange interpolants selection
at the GLL points, and its relation to the GLL integra-
tion rule, SEM shows an important property that
leads to the diagonal form of the mass matrix, which
allows a crucial reduction of the complexity and
the cost of the algorithm [28]. In this manner, the
diagonal mass matrix is obtained naturally in
comparison with mass matrix lumping techniques,
which incorporate considerable errors.

In order to take full advantage of the property
described above, time-discretization of Eq.  (3) is
achieved based upon a Newmark scheme (central
difference method) which, may be considered as the
third difference between SEM and FEM. For SEM,
this leads to simple explicit time schemes, as opposed
to the numerically more expensive implicit time
schemes used in FEM [31].

2.2. Coupled SEM-FEM Formulation

Formulation of equations of motion for a soil-
structure interaction analysis has been frequently
explained in the literature, see e.g. [1], and therefore
is only briefly summarized in this section. Consider
the dynamic response of a structure on a semi-
infinite soil medium as shown in Figure (1) in which,
the structure and soil media are to be modeled by
FEM and SEM, respectively. Following a common
notation used in the SSI literature, the nodes associ-
ated with the structure are identified with “s”, those
that lie along the soil-structure contact zone are “c”
nodes, and the other nodes within the soil medium
are identified with “m”, see Figure (1). From the
direct stiffness method in finite element analysis, the
dynamic equilibrium of the system may be written
in the following sub-matrix form:
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where the characteristic matrices at the contact
nodes are the sum of contribution from the structure
(s) and the soil medium (m)
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Also in Eq. (7), a
r  indicates the vector of absolute

displacements of the structure. If both earthquake
excitation and externally applied transient loading
are considered, the right hand side of Eq. (7) can be
expressed by corresponding nonzero terms. This
force vector is included for completeness but is not
completely considered in the numerical examples
presented later in this paper. In this study, two
different load conditions are taken into account: soil
medium subjected to seismic waves only, conse-
quently the external forces on the structure are set
equal to zero in Eq. (7); and structures subjected to
external loading only to investigate the effects of
wave propagation in an elastic half-space.

3. Illustrative Numerical Analyses

The aforementioned methodology has been
implemented in a two-dimensional time-domain SE/
FE code in which, a library of spectral quadrilateral
elements with various orders is coupled with frame
(or, beam-column) finite elements. In order to vali-
date the nature and general behavior of the method,
some numerical examples have been considered. A
plane strain condition of soil domain is assumed for
all examples. No physical damping (i.e., pure elastic
material behavior) is considered in all hybrid
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analyses. Since a finite size of soil domain is regar-
ded in the application of a domain type method such
as SEM, a customary approach for dealing with
infinite media consists of introducing truncated
boundaries and setting fictitious absorbing conditions
on them. To ensure that all energy arriving at the
domain boundaries is absorbed, a special frequency
independent non-reflecting viscous boundary condi-
tion has been widely used for various elastodynamic
and soil-structure interaction problems [32-33]. To
implement this boundary condition, two normal and
tangential dashpots are defined at each node along
the lateral and base boundaries of the soil domain.
The normal dashpots are assigned to absorb the
reflected compressive waves while the tangential
ones are set to absorb the reflected shear waves.
These dashpots must be placed far away from
the initially disturbed region, as they are usually
competent to transmit plane or cylindrical waves.
Consequently, a large-scale domain should be
discretized by SEM. Nevertheless, as shown in the
following examples, SEM is capable to model a
large-scale domain with considerably few degrees
of freedom compared to other numerical methods.
This feature of SEM compensates the necessity of
modeling a large-scale domain, and let the approach
to be still efficient.

3.1. Analysis of Elastic Half-Plane

As the first example, a linear elastic half-plane is
examined to explain the applicability and accuracy
of the present SE method, in calculating the free-field
motion caused by vertical propagating incident SV
wave of the Ricker type:

)5.0(3

)()21.()( 22

−π=τ

τ−τ−=

t

pexftf

v    

             
 axm

                             (9)

where axm 
f  is the maximum amplitude of the time

history, which is selected as 0.0005m in this example,
see Figure (2). Figure (3) represents the geometry
used for this problem in which 25 spectral elements
are considered. The material properties of the
medium are: the shear wave velocity of the medium
is 267m/s, the mass density is 2.22t/m3, and the
Poisson's ratio is 0.33.

To examine the convergence of SE modeling,
three different discretized meshes are chosen.
Each mesh consists of square spectral elements,
see Figure (3), with a specific degree of Lagrange

Figure 2. Load function time history of the incident wave (Ricker
wavelet).

Figure 3. Geometry and discretization of the half-plane prob-
lem for which a typical third order ( ln =3 ) spectral
element is shown in more detail.

Figure 4. The SEM results of horizontal displacement time
histories of the half-plane in the case of an incident
SV wave for three types of spectral elements with
specified order of Lagrange polynomials.

polynomials, .ln  The time histories of horizontal
displacement at the ground surface are investigated.
The numerical results by SEM are compared with
that of analytical solution, in the case of an incident
SV wave. Figure (4) presents the results for three
types of spectral elements inspected in this example.
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From Figure (4), one may easily observe that the
higher-order elements give better results so that the
results from the third order spectral elements and
analytical approach are almost identical. As expected
in the case of vertically propagating shear waves in
an elastic half-plane, the total horizontal displacement
of the free surface is twice the incident wave
amplitude.

3.2. Analysis of Two-Layered Elastic Half-Plane

In this example, the application of the presented
SE method in performing site response analysis of a
two-layered half-plane is illustrated. In Figure (5),
a soft layer with a height of 10m rests on a stiffer
half-plane whose 50m in depth direction is modeled
in this example. For this problem, the comparison of
the results is made with the results based upon a
hybrid BE/FE method [23]. Therefore, we selected
the same geometry, see Figure (5), with the same
shear wave velocities of 70.5m/s and 141m/s for
the upper soft layer and the half-plane medium,
respectively. Furthermore, the material properties
of both layers are as follows: the Poisson's ratio
is 0.33, and the mass density is 2.0ton/m3. The
half-plane is excited by the same vertically incident
SV wave as Figure (2). Similar to the first example,
various meshes were inspected among which, the
results corresponding to the converged mesh are
presented here. These converged meshes are those
of the minimum order that present the most accu-
racy in comparison with the hybrid BE/FE method
[23]. The mesh includes 36 square spectral elements
whose sides are shown in Figure (5).

Figure 5. Geometry and discretization of the two-layered half-
plane problem.

The time variation of horizontal displacement at
points O and I are shown in Figures (6) and (7),
respectively. Figures (8) and (9) present the hori-
zontal acceleration time histories at the same points
of Figures (6) and (7), respectively. As it is obvious

Figure 6. The SEM results of horizontal displacement time his-
tory at point O of the upper layer for the spectral
elements of order 4.

Figure 7. The SEM results of horizontal displacement time
history at point I of the upper layer for the spectral
elements of order 4.

Figure 8. The SEM results of horizontal acceleration time his-
tory at point O of the upper layer for the spectral
elements of order 4.
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Figure 9. The SEM results of horizontal acceleration time
history at point I of the upper layer for the spectral
elements of order 4.

Figure 10. The considered geometry of a half-plane domain
subjected to surface traction.

Figure 11. Horizontal and vertical components of displacement
at observation point A due to a surface traction.

from these figures, excellent agreement can be
observed between the results of the present work
and the hybrid BE/FE method [23]. It is worthwhile
remarking that the results shown in these figures
are pertaining to very coarse meshes in which few
degrees of freedom are involved.

3.3. Half-Plane Domain Subjected to Surface
Traction

The response of a half-plane domain excited by
a surface traction is examined in this example.
Solutions based upon a BE/FE approach [34] are
available for comparison. Figure (10) depicts the
modeled elastic region, which is loaded by a uni-
formly-distributed ramp function, ),(tP  as:
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in which, 0P  is 1000N/m, and ∆ t is 0.0045 second.
The material constants are as follows: the Young’s
modulus E = 2.66x105kN/m2, Poisson’s ratio is 0.33,
and the mass density is 2.0ton/m3. In Ref. [34], the
considered domain of Figure (10) was discretized
into a FE subdomain (Region 1) and a BE subdomain
(Region 2). In the present work, using a mesh
consisting of 12 square spectral elements, SEM
approach yields results, see Figure (11) which are
almost identical to the results obtained by the BE/
FE approach. It is worthwhile remarking that the
results of SEM approach are pertaining to a simpler
formulation in comparison with the formulation of
the BE/FE approach.

3.4. Single Degree of Freedom (DOF) Structure

The application of the present approach to the
interaction between a flexible structure and its
supporting elastic half-plane soil is examined in this
example. The result of the present approach is
compared with the lumped parameter approach
[35] in which the supporting half-plane is replaced
by equivalent dashpots and springs. Furthermore,
the comparison of the results is made with the
results based upon a hybrid BE/FE method [21].
Figure (12) represents the single degree of freedom
stick model of the structure and its supporting
half-plane. The same material properties of Ref.
[21] are selected as follows: the Lame’ constants
λ= 24081 and µ = 16054, and the mass density of
the elastic half-plane is 0.002006. Furthermore, the
lumped mass is equal to 10 and is located at the
story level with the height of L = 3. The lateral
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rigidity of the structure is EI = 1.8x106; all quantities
in consistent units. The right hand side of Eq. (7)
is modified as the following form to represent the
applied harmonic horizontal excitation at the mass
level
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The response of the structure is obtained using a
mesh including four square spectral elements to
model the elastic half-plane, and one frame finite
element for the single DOF structure. The results
corresponding to fourth and fifth degree of Lagrange
polynomials ( =ln 4 and 5) are represented in
Figure (13). As may be observed from these figures,
good agreement between the results of the proposed
SE/FE approach and the results obtained by the
BE/FE [21] and simplified [35] approaches indicates
the validity of the present algorithm.

3.5. Two Degrees of Freedom Structure

In this example, the application of the hybrid SE/
FE approach to the interaction between a flexible
two degrees of freedom structure and its supporting
half-plane medium is investigated. The result of the
present approach is compared with the results of a
hybrid BE/FE method [21].

Figure (14) represents the two DOF stick model
of the structure and its supporting half-plane. The

Figure 12. Geometry and discretization of the 1DOF lumped
mass structure resting on an elastic half-plane.

Figure 14. Geometry, discretization, and applied loading of the
2DOF lumped mass structure resting on an elastic
half-plane.

Figure 13. Time variations of horizontal displacement at the
level of lumped mass: (a) fourth order and (b) fifth
order spectral elements are used for comparison
of three methods.

same material properties of Ref. [21] are chosen as
follows: the Lame constants λ  = 6629990 and µ  =
3315000, and the mass density of the elastic half-
plane is 0.000282. Moreover, the lumped masses of
each degree of freedom are equal to 10 and are
located at the story levels with the height of L = 12.
The lateral rigidity of the structure is EI = 1.55x1012;
all quantities in consistent units. No structural
damping is considered in this example. For this
example, the right hand side of Eq. (7) is modified
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as the following form to represent the trapezoidal
excitation, see the inset of Figure (14), applied at
the top mass level
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The response of this structure is computed using
a mesh of eight square spectral elements to model
the elastic half-plane, and two frame finite elements
for the 2DOF structure. The response of the soil-
structure system is firstly obtained using a fixed
base analysis to validate the FEM formulation of
the present approach, see Figure (15). As expected,
this analysis represents the condition in which the
structure experiences undamped oscillations in the
initial period of 1.08ms (forced vibration) followed
by the rest period (free vibration) of the response.
For the whole soil-structure system, the horizontal
displacements of the first and second lumped

Figure 15. Horizontal displacement time histories of the fixed
base 2DOF structure at (a) the first and (b) the sec-
ond lumped mass levels.

Figure 16. The coupled SEM/FEM results of horizontal displace-
ment time histories at (a) the first and (b) the second
lumped mass levels.

masses corresponding to ln = 2 are represented in
Figure (16). As can be seen from this figure, the
general trend of two approaches presents a reason-
able agreement from engineering point of view.
The discrepancy between two approaches may be
attributed to the following features:
a) The proposed SE/FE approach is two-dimen-

sional, whereas the BE/FE approach [21] is
three-dimensional, and

b) The principle difference between the SE and BE
formulation of the present approach and the BE/
FE one, respectively.

3.6. Five Story Frame Structure

In the last example, the application of the pro-
posed approach to a more practical problem of
interaction between a typical two-span five-story
frame consisting of twenty-five frame finite elements
and its supporting half-plane soil is studied, see
Figure (17). The following properties are selected
for all structural elements: lateral rigidity EI = 2.52 x

1010, mass density ρ = 6000, and cross-section area
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Figure 19. The horizontal displacement time histories at the
fifth story level (point A) for three types of spectral
elements with specified order of Lagrange polyno-
mials.

Figure 20. The horizontal displacement time histories of point
A for two cases of far-field boundary conditions.

A = 1.00, all quantities in consistent units. No struc-
tural damping is considered in this example. In
addition, the following parameters are used for
half-plane medium: EI = 2.6 x 109, ρ = 2000, and v =
0.33. Figure (18) depicts the structural system,
excited by a concentrated horizontal loading, see the
inset of Figure (18), resting on a half-plane which
consists of fourteen spectral elements (20 x 70m2)
with a certain degree of Lagrange.

In order to show the convergence of results
towards an exact solution, various meshes associ-
ated to ln  = 4, 6 and 8 are inspected whose results
are presented in Figure (19). This figure indicates
that the result corresponding to ln  = 8 represents
the converged values of horizontal displacement.
Furthermore, as this method considers soil-structure
interaction effects, damped motion of the structure
response due to the radiation damping in the half-
plane is clearly observed. In addition, the efficiency
of the viscous boundary condition employed in
the present research is examined in Figure (20).
Obviously, the results of fixed (or, without viscous
dampers) boundary conditions show significant
errors due to the problem of wave reflection on the
far-field boundaries of the half-plane domain.

To compare the responses of the soil-structure
system according to variations in the stiffness of
half-plane domain, a time history analysis for
different Young's modulus is carried out using the
proposed hybrid approach.

Figure 17. Geometry and applied loading (at point A) of the
two-span five-story frame structure.

Figure 18. Geometry, discretization, and applied loading of
the two-span five-story frame structure and its
beneath elastic half-plane.
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Figure 21. The horizontal displacement time histories at the
fifth story level (point  A) for various Young's modu-
lus of half-plane medium.

be successfully modeled with few number of DOFs,
preserving high accuracy and efficiency.

Further development of the proposed method is
necessary, as this method will be much more
efficient for the analysis of large three-dimensional
domains. Moreover, this method has the advantage
over other numerical methods in that it provides a
direct time domain approach of obtaining the time
history of the response. Using this advantage, the
new SE/FE method is appropriate to handle non-
linearities and inhomogeneities of soil domain. The
aforementioned extensions of the present method
are under investigation whose results will be offered
in a future publication.
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