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ABSTRACT: The Two-dimensional problem of the transient wave
propagation in elastic multi-layered half-space is studied by the Direct
Boundary Integral Equation Method (DBIEM) combined with the finite
difference procedure applied to the time variable. By means of the Wilson-
0 method the equations of motion are transformed into a set of elliptic
partial differential equations, and then, the DBIE-procedure is applied.
The present hybrid formulation employs the fundamental solution depend-
ing neither on the frequency nor on the time variable. This is the main
advantage of the proposed method. The theoretical seismograms in the
time domain are obtained on the free surfaces of two real geological situ-
ations for a multi-layered soil region with existence of salt ore deposits.

Keywords: Multi-layered geological region; Transient wave problem; DBIEM
together withwilson -6 method

1. Introduction

Transient waves are generated by the body figrcg in The main aims of this paper are:
the Navier-Cauchy equation of motion for elastic solidsy To find the solution of a two-dimensional plane-
or the surface displaceman(,t), or tractionp(r,t) given strain transient wave propagation problem for a

as boundary conditions for the corresponding boundary-  multi - layered geological region with complex ge-
value problem. If the time function for these sources is ometry on the base of a hybrid usage of both finite
time-harmonic and the motion is observed long after the  differences scheme of Wilsorg- method together
initiation of the source, the wave motion is also harmonic with the BIEM.

in time and it is called steady state. Otherwise, the wa#e  To show that the changes in the soil region during
motion is transient. In an infinite medium, the transient the years of the exploitation process lead to the
wave field generated by a concentrated force of arbitrary ~ change in its dynamic response, i.e. to the change
time function was determined by G. Stokes in 1849. He in the obtained theoretical seismograms.
constructed the general solution of the inhomogeneous The propagation of transient elastic waves through
Navier-Cauchy equation of motion by what is now callethe layered half-space is of considerable interest to
the method of retarded potentials. Next in mathematicahgineers, geologists and seismologists. Lacking any
complexity is the problem of transient waves in a halfanalytical method to treat such complex problems, resort
space. H. Lamb in 1904 investigated this problem first. THeas been made to the numerical techniques-finite element
“half-space” and related problems have since becomerethod and boundary integral equation method. Most of
focal point for many studies. Many applications of elastdhe earlier works on transient wave propagatioBBi
dynamics in seismic mechanics, design of earthquakievolved transform domain formulations in conjunction
resistant structures, dynamics of structural foundationgth numerical inversion scheme [8-12], etc. The direct
as well as basic studies on dynamics of material defetime-domain formulation of thBIEM is used in [13-16],
begin with the model of a half-space. The solution is muattc. Detail analysis for advantages and disadvantages of
more complicated when additional plane boundaries alB¢EMin comparison with other numerical methods is given
introduced to form a layered half-space. This is a basit [16]. In this paper 8IEM formulation, different from
model for theoretical seismograms, which has always betire above-cited two formulations, is proposed. By means
a subject of intensive study. of the finite difference method, applied to the time
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variable, the equations of motion are transformed intosdrain anduy,(x y;t), Uy (X y;t) denote the horizontal and
set of elliptic partial differential equations, and then, ththe vertical displacement components respectively.
DBIE-procedure is applied at every time step. _ The initial and boundary conditions are

The most of the works are devoted to the multi-layered
regions with simple geometry of the boundary betwee, (x, y,t) = u; at(x,y) 0S.0;n; = p at(xy)0S,
layers (usually parallel boundaries). To the authors
opinion there is a lack of studies involving real multi-u;(x, y,to) = ujo, Ui (% yito) =t (x,y)O(x,y)IS, (5)

layered regions with complex geometry of the boundaries ) . )
between layers (non-parallel boundaries). The governing equations (4) together with the bound-

It is given here BIEM formulation, novel numericalaryk;ﬁ’llnd 'n]'ct'?]l condlt_lons (IS) przsent the boundary-value
scheme and FORTRAN codes created for solution of a ﬁSO em of the transient elasto-dynamics.

transient seismic waves propagation problem in 25 BIE Formulation of the Problem
multi-layered soil region with very complex geometry of

the soil layers and this geological column is a real geologihe considered problem can be solved using the follow-

cal region in East Bulgaria. ing approaches:
% Laplace or Fourier transformation leading to the
2. Formulation of the Problem next BIE
2.1. Governing Equatons 6T .6 = [lU; (21.)B (1. B (1.0 )3 (n.0fas
The mathematical theory of elasticity is formulated in terms .
of body force f, surface force (traction)p, stress +_[Uij(rvn1(*))Qj (n.w)dv (6)
\Y%

tensorg;;, strain tensok€;; and displacement vectos;

of an elastic body. The isotropic materials are charactdtere r and n are the position vectors of the field and
ized by material constants such as the shear mdgiule running points; the constants; depend on the geom-
Lame’s constants\, 1 and mass densitp . The linear etry of the boundary at the collocation potnlgi} andP,j*
theory of elasto-dynamics is embodied in the followingre the fundamental solutions of the displacement and the
set of governing equations for a body of voluivie traction given in the Appendiy;, p; are the correspond-

enclosed by a surfacg = §, + So ing Laplace or Fourier transformations of the displacement
Equation of motion and the tractionQ; is the sum of the Laplace or Fourier
transformations of f; and the members, containing the
oj;+fi=U; xOV (Ljnitial velocity and displacement; the Laplace transforma-
Physical equations in elastic case tion variable is S=-jw. This method is used by the
authorsin[1, 2, 3].
Gy = 2u(v/(1-2V)) 3 Ewct 21g; XDV @ . A hybrid method consists of two stages:
i) Application of the method of finite differences in
here:y = ST A respect to the time variable-then the set of parabolic
A +p) o , . -
partial differential equations is transformed into a
Equation of geometry set of elliptic partial differential equations;
i)  TheBIEMis applied at each time step. This hybrid
8ij=%(ui,,—+uj,i) 3) formulation is used by authors in [4] in the simple
case of an elastic half-space. This approach will be
The governing equations of the two-dimensional  ysed in the current paper but in the case of a multi-
motion of an isotropic and homogeneous elastic medium layered geological region with non-parallel bound-
are obtained by Egs. (1), (2) and (3) and have the form aries of the layers. Due to the fact that this method
(Cf, +C52)ui,ij+cszuj,ii —q; = —p'lfj(t) 4 is applied here in a multi-layered region with

complex geometry, we will describe it in the next

wherei, j = x, y, the summation convention applies to section.
the repeated suffix, the notation(.); =9()/dx;is
introduced to denote the partial derivatives with respeét
to co-ordinatesx;, the dot signifies material time
differentiation andC, =[(A +2u)/p]"? c. =(u/p)?

are speeds of the longitudin® and shearS- wave, The application of the Wilsog- method [5] tog; and j;
respectively. The problem is two-dimensional and of plangelds

A Hybrid Method of Finite Differences
Method and BIEM for the Solution of the
Transient Elasto-Dynamic Problem
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wheref (t) denotes the time signature of the source,

) 3 .
G (t+6A1) GAt[u'(He t)-ui (6] -2 (1 Cw = Cyy = 1 for the interior points,, = ¢,y =0.5 for the

points, located at the boundary
GA 64t (t) 7)
0 N
X0, U X8 6 dr
G (t+6At):#[ui (t+0841)-u; (8)]- 24 (1) gAx(xé’. y@)g: gk; P68 )rfk st y8-E)ar
p P N
EA/(XO:YO)H DZ px(ng yS)IU yx(XO -x5, ¥~ y'é)d/'k
_ 6 - k=1 r
—u(t) k
6At
where At denotes the time step ar@l is a coefficient, + N
X0, U yx\X§ — X0, Yo~ Vo)d I
which secures the stability and the convergence of the kZl (0 YO)rk X( 6= y(§’ yO) kg
finite difference procedure. This procedure becomes + N * k O (9a)
, U \Xo -x§ , d
unconditionally stable fo6 >1.37. After substitution of kgl (XO yO),-k ( 0 Y6~ y0) kE
Eqg. (7) in Eq. (4), the next system of elliptic linear partial
differential equations is obtained at time 6A t ON .
B, (x5, y&)D Dkzlux(Xc'?, y8)[ Bl - v~ vE)ari
(c2-cu;+0a0)+ciu,; +641) O o AEN krk , . )
HBY (XO' y6H B > Ux(Xo, YO) Pyx(X(?‘Xo, yo- YO)d Ty
-k (t +0A1)= =X (8) k=1 i
where N
* D
* kzluy(xlé, y(l)() PyX(Xé)‘Xg: Vi ylé)d F'vg
k?=—6 . x, =p f(t+6At)+ —5ui(t) N "k O
2 2 *
gat + 3 uy(xb &) 1Ry (= v via g )
k=1 Ik H
eA,[u i ()+ 20 (b)
As it can be seen from Egs. (8) the last are the same% (Xo Yo )E B Uxx,xs(XO Xs. Y6~ ys)
the elliptic partial differential equations, obtained after th U e V-
application of the Laplace transform wigh= 6/ 6%(At)*. %:y( )H e yxxs(xo 56 yS)
That is why the conventional diréd8tEM can be applied —U" (Xp_X oy )]
to Egs. (8) at a given time stegt. The fundamental XKYS\T0 TS IO ISig ©0)
solutions, given in the Appendix, can be used, but in this —U;y,ys(xé’—xs Vi ySE

cases=—jw=k. The discretization used in the analysis

involves N constant boundary elements avdconstant

triangular elements. The points, where the unknowpp, (Xap )D DZG j'Uxx(Xé)‘Xg, Y6~ yg)dgk
values are considered, are called “nodes” and they arelih O= O 2

the middle of the element for the so-called “constantBDy(Xg YO)E Dzd jUyX(xé’—x(')‘, vé- yS)ko
element. The values of the displacement and the traction

are assumed to be constant over each element and equal

. . M
- * O
to the value at the m|d. element “node. F:)r this type o.f + ZO(l; jny(Xé)—Xg, ve- yg)koD
elements the boundary is always “smooth” as the node is k=1 "9y 0
at the centre of the element. The discretization nodes are Mok k k O (9d
. . . + ZGyIUW(Xé’-xo, yb- yiJaa s D
in the middle points of the all boundary elements over "= E

the free surface and they are in the centres of gravity of
the all M constant triangular elements used for_k K 6

a; =kuy; )+ )+ 24, t
discretization of the half-space. As a result the next' (XO 0 ) oAt ()b yo ) (XO )* )

system of discretized boundary integral equations ﬁote that Egs. (9a -9c) are evaluated at tifredA ¢

obtained while Eq)(9d) is ev?luatesj at tirnén the above matrices
0 D v D u g, v8) and uy\x, y§), are compongnts of the

%J X VO) X° VG D—EBxg > v% 0 unknown d|splacementpx(xo y(‘))) and py\x$, yé’) are

DO vaEEJv X0 Vo )8 BAG V& E BBy\Xo: Vo E components of the unknown tractiong, ys are the

co-ordinates of the seismic source, and the notations

&, (2, ve)o be(xg, vo)o (s =00/9xs () =0()/0ys are introduced to

+pf(HC ( )D+P ( o p)D (9) denote the partial derivatives with respecioand yg

xovoH  Hpy & vEH respectively.
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4. Numerical Realization Algorithm . 3000m 4.500m 3000m % .
D
The numerical procedure for the solution of the transient A "56 ' A\ 500m
elasto-dynamic problem described above is Al 0 \ 0 500m
5 7
«  Solve the system of Eq. (9) for=0+6At and JuR * ?ggm
obtain u,, Uy, py Py atall collocation points on the Qg 200m
boundary (note that for=0,aX =0). o 300m
+  Fort=0+6At evaluateu, U, p. p, anda, oy 1000m
at all interior collocation points.
% Fort =0+At by the Wilsong method calculate
anuynljxy uy, ule.jy- : : 1000m
% For t =At+0At solve the system of Eq. (9) and |+
obtain Uy Uy, Po Py at all collocation points on the A 800m GOOBm 800m B
boundary.

k

v Figure 2. The (2D) geometry of the multi-layered geological

¢  Fort =At+0At evaluatau,, u, p,, p, anda X o
x Uy Be Py X region in 1994.

at all interior collocation points.

23 For t =2At by the Wilsong method calculate
Uso Uys Uy Uys Uy Uy -

% Fort =2At+6At solve the system of Eq. (9) and
obtain u,,uy, py, p, atall collocation points on the
boundary.

correspondingly in Figures (3) and (4). There is a change
of the situation during the years when the exploitation of
the salt ore deposits has been done. The main goal is to
show that the changes in the soil region during all these
years lead to the change in its dynamic response, i.e.
%  Fort=2At+06At evaluateu, Uy, pe py andaX - - : -
k . : Ty x»  to the change in the obtained theoretical seismograms. It
ay atallinterior collocation points. is assumed that the region is subjected to the buried

Based on the above scheme, the evaluation gkplosive seismic load, which time function is the
responses fort =3At+68At and subsequent ObserVa'parabolic ramp function given in Figure (5)

tion times is straightforward.

) WS for t<0
5. Numerical Example o,
.5t for 0st<A
Two real geological situations for a multi-layered soilf ) =0, ) A=0.1s
media with existence of salt ore deposits, in Figures (1) %)'St —(t-4)" for Ast<24 (10)
and (2) are considered. These situations concern one and QAZ fort>2A
the same geological region but in different periods of
its exploitation -in 1951, see Figure (1) and 1994, see Figure
(2). Due to the symmetry the half of the geometry is given 400m 3000m
J F X
3000m 800m 3000m
X
1000m
a, Q, 1000m
1000m K M E
500m Q, \ 500m
L
N —
500m
2000m Q4 Qg H[
500m
—
2500m 500m
+ + D _|C
*+ | l1000m
+
1000m
A vy B
1 400m_, 6000m ,400m A R
Y 3000m " 400m
Figure 1. The (2D) geometry of the multi-layered geological
region in 1951. Figure 3. A half of the geometry of the geological region in 1951.

4 / JSEE: Fall 2000, Vol. 2, No.4



Seismic Wave Propagation in a Multi-Layered Geological Region

400m 3000m conditions are satisfied
I
s, Fx R,(6Y)=0 andu,(xy) =0 (12b)
500m K Q& % The influence of the geological column on the
M a 1000m . . .
500m Qs \ 7 motion of the half-space has to vanish at sufficiently
L N 2 large distances, or Sommerfield boundary conditions
350mi Q| €4 p have to be satisfied at infinity.
150m foot—o R Qs
200m 2 T % On the boundary between two soil lay&2s and
o 2000m Q,,; inside the geological column the next conti-
1 . o . g
nuity conditions have to be satisfied
250m
D_|c uxy) =uxy (12¢)
Sg
1000m and the motion must be such that all the dynamic
forces acting onto the boundary are in dynamic
A B equilibrium
Y 3400m
Figure 4. A half of the geometry of the geological region in 1994. D (X y) - n(x, y) (12d)
(] ]
&ﬁ %i +1

% On the boundary between the geological column
and the half-space the next boundary conditions
have to be satisfied

1
1
!
0 A 2a

Figure 5. The time function of the dynamic source.

— i field
- Ui ree—tie (X, V)
e

ui(xv) (12e)

e

Two-dimensional in-plane transient wave propagatiofer * ¥ 0 AB, BC, CE, EFe = Q,, Q,, Q5 for Figure (3)
problem will be solved for the above geological columns?‘.nfd ef_:é?la £27,Q¢ for Figure 4. The displacement field
The plane strain state is considered. The soil materialis . (% Y) is obtained after the solution of the prob-
homogeneous, isotropic and elastic. The displacemdfifn for transient elastic waves in a half-space without any
vector is with components,(x, y,t) and uy (X, t). layer due to the buried explosive load of type (10).

The governing Egs. (4), the initial conditions (11) and
the boundary conditions (12) represent the considered
u(x Y, =ul(x y) andu;(x y,t) =u’(x, y)fort =to (11)  boundary-value problem. The problem is solved following
the numerical procedure described in detail in section 4.

Following the above-described numerical procedure,
It is convenient to represent the motion in the half-spaegercoming of weak and strong singularities in the
as a superposition of the “free-field” motion and the waveshtained integrals and after satisfaction of the given bound-
scattered from the multi-layered geological column. Thgry conditions, an algebraic complex system according to
“free-field” motion consists of the plane incident wavehe unknowns is obtained.
and the reflected waves of the free boundary. The solution The regular integrals are computed numerically employ-
Of. the problem for transient ela§t|c waves_m a half_Spa?r?g the Gaussian quadrature scheme. The kernels of the
without any layer due to the buried explosive load of type . 1
(10) is given and compared with other solutions in [4]. type [R dly have singularities Iikeoﬁcﬁﬁ for

The boundary conditions (12) -prescrlbe tractions or&D[_’l',kH] that leads to the CPV integrals. The kemels of
the part of the boundang, and displacements on the .
complementary partg,, 5= sUs, SNS =@ They the typerIUij d 7« have singularities like)(In(c £ £)) for

are: K . . .
O[-1, +1], - .
. On the surface of the half-space.yat 0 (the cdl 1, which leads to non-singular integrals. The

boundanFJ) all tractions have to be zero singular integrals are solved analytically based on the
asymptotic expansion for a small argument of the Bessel
pi(x0)=0 @ nction. In all corner points, where the Helder continuity
& Due to the symmetry it is considered a half of theonditions are not satisfied, it is applied the Lachat and
geometry and forx(y) OJA the next boundary Watson concept [7] thapf_lzcij njH: PG =0jn;, for

The initial conditions are

The boundary conditions are, see Figures (3) and (4).
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two different boundary element$S™ and IS, which parameteg is 1.4.

formed the corner. The theoretical seismograms in the time domain for the

horizontal u, and verticaluy components of displace-

ment at the receiver, located at the free surface of the

In this item the numerical results obtained after thi&yered half-space at distanee= 1400m, are obtained.

solution of the boundary-value problem, formulated i ey are perturbed by a buried explosive seismic source

section 5, using the numerical scheme which is describéhat is a line source of dilatation actinggt=(0.0,4500)).

in section 4 based on the Direct Boundary Integrdihe time function of the sourcé(t), see Eq. (10) is

Equation Method combined with the finite differencedssumed to be parabolic ramp function which half-rise

procedure applied to the time variable are given. THéENe 4 is taken as1=0.1s.

advantages of this novBIEM formulation are discussed ~ Figures (6a)-(6b) show the horizontal and vertical

in the above items. component of displacement in the time domain at a point
The geometrical characteristics of the geologicd/1400,0.0), when the boundary-value problem is solved for

regions, presented in Figures (1) and (3) and Figures {R§ geological region given in Figure (1).

and (4) are given in Tables (1) and (2). The mechanical The theoretical seismograms in the time domain for the

properties of these geological columns are shown in Tablegrizontal and vertical displacements obtained at a point

(1) and (2), see part | of the paper. (1400,0.0) when the boundary-value problem is solved for
The depth of the applied dynamical load is 48@Md the geological region given in Figure (2) are shown in

its location is (0.0, 4506). The epicentre distance of theFigures (7a)-(7b).

receiver isx = 1400m. The time step at the realization of One can see that the transient dynamic responses of

the numerical algorithm is 0.08&nd the value of the one and the same real geological region - a multi-layered

6. Numerical Results

Table 2. Geometrical parameters of the geological column N2.

Table 1. Geometrical parameters of the geological column N1. Uy[m]
Boundary Length [m]

AB 3400 0.03 F
BC 1000

CE 2000

EF 1000 0.02 F
Fl 3000

1J 400

JK 1000 0.01
KL 500

LA 2500

t(s)

16 26 36 486 56

Figure 6a. Theoretical seismogram for the horizontal displace-
Boundary Length [m] ment in column N1.
AB 3400
Uy [m]
BC 1000 y 0.031
CE 2000
EF 1000 0.02
Fl 3000
0.01F
1J 400
K
J 500 000 |
KL 500
LQ 350 -0.01
QS 150 _002 _| L L L L t(S)
SW 200 16 26 36 46 56
WA 2300 Figure 6b . Theoretical seismogram for the vertical displace-
ment in column N1.

6 / JSEE: Fall 2000, Vol. 2, No.4



Seismic Wave Propagation in a Multi-Layered Geological Region

Ux[m] b

0.03

0.01

-0.01 t(s)

16 286 3.6 46 5.6

Figure 7a. Theoretical seismogram for the horizontal displace-
mentin column N2.

Uy[m]

003

0.015

-0.015

-0.03 L - : . -
16 26 36 46 56

Figure 7b. Theoretical seismogram for the vertical displace-
mentin column N2.

exploitation of the salt ore deposits has been done leads
to the change of the transient wave picture due to the
buried dynamic load. The time records of the surface
responses are computed by the proposed in [4] novel
formulation of DBIEM for the real geological situations
and different wave fields are obtained. These results show
that the changes in the soil region lead to the change in its
dynamic response, i.e. to the change in the obtained
theoretical seismograms. All this assures us that the
exploitation process leads to the changes in the geologi-
cal situation of the region, respectively to the changes of
the soil response during eventual earthquake.

Finally we would like to underline once again that the
present hybrid formulation, combined the finite
difference procedure with the direct boundary integral
equation method employs the fundamental solution
depending neither on the frequency nor on the time
variable. This is a serious advantage of the proposed
method. This work shows that the method proposed here
works well even in the cases of multi-layered geological
regions with complex geometry.*
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