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ABSTRACT: In recent years computational simulation has taken an
increased engineering importance in the seismic evaluation of critical
structures. However, accurate nonlinear analyses of large suspension
bridges continues to present earthquake engineers with a technically and
computationally challenging problem. Application of general purpose
nonlinear finite element software often results in computational models
which are intractably large and computationally prohibitive. There are
also specialized aspects to suspension bridges modeling, such as appro-
priate gravity initialization, that are not easily solved with general
purpose computer programs. To address the simulation model challenges,
a reduced order computational model has recently been developed for
efficient nonlinear time history analysis. The model employs special
element technologies tailored to suspension bridge applications and
provides a hybrid implicit-explicit solution algorithm which can perform
appropriate gravity initialization and adeptly handle extreme nonlinearties
such as dynamic impact associated with pounding between bridge seg-
ments, foundation rocking or member buckling, and provide a framework
which is readily migrated to a massively parallel compute environment.
The computational model is described and a sample application is
presented for the near-field seismic response of the San Francisco-
Oakland Bay Bridge Western Crossing (USA).
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1. Introduction

The design and analysis of major structures has become
increasingly reliant on large-scale computational simula-
tion. Linear simulations have been the mainstay of design
computations, however, as performance based design
procedures become more prevalent, there will be increased
demand for accurate numerical models capable of simulat-
ing nonlinear response and ultimate structural instability.

The computational requirements for nonlinear seismic
bridge analyses, which include changes in the global model
geometry, impact between adjacent bridge segments, and
material inelasticity, can be prohibitive if general purpose
finite element programs are employed. This fact begs for
efficient nonlinear computational models which will permit
parametric studies essential to a clear understanding of
bridge response and design optimizations.

In addition to computational difficulties, there continue
to be phenomenological issues in the analyses of these
important structures. The effects of spatially varying

earthquake ground motions; near-field earthquake ground
motions containing long-period ground displacement
pulses and permanent ground displacements; and fluid-
structure interaction between a bridges and the turbulent
atmosphere, are topics for which scientific and engineer-
ing understanding are incomplete. Efficient and accurate
simulation models will be essential to studying these
complex phenomena.

There have been extensive analytical and numerical
studies of the vibrational characteristics of cable supported
bridges undergoing small amplitude, linear vibrations.
The early work of Abdel-Ghaffar [1, 2, 3] provided basic
understanding of the linear vibratory dynamics of
suspension bridges. Abdel-Ghaffar’s work constructed
analytical models for the natural vibrations of suspension
bridges and gave insight on the interactions between
towers, cables, and deck systems. In a combined simula-
tion and field  observation study, Dumanoglu, Brownjohn,
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and Severn [4] utilized two-dimensional and three-
dimensional linear finite element models to investigate the
natural vibrations of the Fatih Sultan Mehmet suspension
bridge (Turkey) and extracted a large number of modes for
the structure. Dumanoglu et al also performed transient
analyses for multiple support earthquake excitations,
concluding that variable support motion can lead
to significantly larger forces than coherent support
motions.

The first detailed experimental work on low amplitude,
linear suspension bridge vibrations is contained in the
study of Carder [5] in tests performed on the Golden Gate
and San Francisco Oakland Bay Bridges (USA) in 1936.
Carder employed a simple “Vibration-meter” consisting of
a vibrating mechanical device recording on a strip of
moving photographic paper. Carder periodically measured
natural vibrations of bridge components during the
construction of the bridges. The natural frequencies of
the bridge components were inferred by examination
of motion traces on the photographic plates. Carder’s
experimental tools were rudimentary in 1936, however, as
discussed in subsequent sections, his experimental results
appear to have yielded accurate modal data. Abdel-Ghaffar
and Scanlon [6, 7] performed experimental investigations
on the Golden Gate Bridge, in which 91 modes were iden-
tified in the range of 0-1.5Hz for the suspended structure,
and 46 modes were identified in the range of 0-5Hz for the
towers. The measured lower modes compared favorably
with eigenvalues and eigenvectors obtained from a finite
element model. Brownjohn, Damanoglu, and Severn [8]
completed ambient vibration measurements on the Fatih
Sultan Mehmet suspension bridge to identify mode
shapes, frequencies, and modal damping. The observed
modes correlated well with the lower modes computed from
a finite element model, with increased divergence between
observations and the model results at higher frequencies.
Additional observational data is provided in the work of
McLamore, Hart, and Stubbs [9] where experimental
observations of the ambient vibrations of the Newport
(USA) and William Preston Lane (USA) suspension
bridges identified natural modes of vibration and
corresponding modal damping values.

The existing experimental and modeling studies have
generally demonstrated the ability of computational
models to adequately represent the lower natural modes
associated with small amplitude, linear vibrations. Due
to the complexities and computational difficulties of
large-scale nonlinear analyses, and a complete absence of
measured response data in the strong motion earthquake
regime, the effect of nonlinearities on cable bridge response
has been investigated to a lesser extent. Abdel-Ghaffar
and Rubin [10, 11] demonstrated the nonlinearity associ-
ated with modal coupling in amplitude dependent free
vibrations of suspension bridges with application examples

for the Golden Gate and Vincent Thomas bridges, and
Nazmy and Abdel-Ghaffar [12, 13] have shown the impor-
tant effect of geometric nonlinearities in cable stayed
bridges. Consideration of nonlinearities in cable supported
bridges is also beginning to infiltrate engineering practice,
for example Ingham, Rodriguez and Nadar [14] describe
design applications of nonlinear analysis in seismic
retrofit studies of the Vincent Thomas Bridge (USA).

The objective of the work described in this paper was
the development of a simple and robust computational
model for three-dimensional, nonlinear analysis of suspen-
sion bridges. The resulting finite element model accounts
for nonlinearities due to finite displacements, select
material nonlinearities in the bridge members, impact
between adjacent bridge segments, and potential rocking
and uplift of large caisson foundations. The model
provides a framework in which the most complex nonlinear
behaviors, such as buckling of vintage built-up laced truss
members, can be readily incorporated. Unique features of
the model include the element technologies, which are
tailored to the construction of a reduced-order model with
a minimal number of global degrees of freedom; and the
utilization of an explicit time-integration scheme for
dynamic analyses. The explicit scheme provides a simple
and highly reliable nonlinear time stepping framework for
transient nonlinear analyses, which is especially effective
for numerically capturing strong nonlinearities. The model
incorporates an implicit based, automated procedure for
nonlinear gravity initialization of the bridge model, which
computes the correct bridge geometry and initial stress
field in the cable and deck trusses for gravity loading.

2. Computational Bridge System Model

The research study motivating the development of the
computational model consists of a multidisciplinary
seismological and engineering case study of the San
Franciso-Oakland Bay Bridge, see Figure (1). This 3400m
long twin steel suspension bridge was built in the early
1930’s and consists of a double deck system supported by
steel trusses with laced members. With approximately
280,000 vehicles per day, this structure carries the highest
traffic volume of any bridge in the world, it is a critical
regional transportation link and a seismically interesting
structure by virtue of its location in the near-field of two
very active earthquake faults. A principal objective of the
ongoing investigation is to assess the effects of long
period, near-field earthquake motions on this spatially
distributed   flexible structure, an issue which has taken on
pressing importance in light of recent observations of the
long period content of near-field records in major earth-
quakes [15,16].

This paper describes and demonstraes application of
the computational bridge model which has been devel-
oped. The description of the computaitonal model details
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Figure 1. Seismological setting and the San Franciso-Oakland Bay Bridge Western Crossing. (a) Bridge location and nearby faults;
(b) Twin suspension structures of the Bay Bridge Western crossing.

reference the application to the Bay Bridge system,
however, the soulution algorithms and element technolo-
gies described have broader applicability to other cable

supported bridges with appropriate changes in element
properties.

The bridge model consists of the five basic elements,
as shown in Figure (2). A reduced-order deck model,
consisting of a composite combination of truss, membrane,

and special sway stiffness elements represents the deck
and stiffening truss system. A finite-rotation fiber

bending   element is used to represent the bridge towers.
A penalty based node-to-node contact element captures
potential contact and impact between the deck system and

towers, and a rocking with contact foundation model
represents the large caisson foundations including the

potential for uplift. A tension-only cable element with
user-defined initial stress represents the bridge cable
system.

The philosophy in the development of the model was
to maintain the greatest possible simplicity in the element

formulations and solution algorithms, and to provide a
robust algorithm which could handle a multiplicity of strong
nonlinearities. An explicit time integration algorithm

provides the required robustness for highly nonlinear
dynamic problems. Explicit integration schemes are

conditionally stable with the time step size governed by
the highest frequency of the simulation model and with
general purpose software this has historically resulted in

too small a time step and too costly a solation procedure
for long duration dynamic loads (e.g. earthquakes). On the

other hand, the potential advantages of explicit integra-
tion are well known for highly nonlinear problems. These
advantages include the basic simplicity and reliability of

the algorithm when compared with the most efficient
quasi-Newton implicit schemes. Explicit integration

provides accuracy and high reliability for large nonlinear
structures when extreme nonlinearities occur and can
readily handle buckling or contact intensive problems

which can significantly hamper convergence or degrade
the economy of implicit integration schemes. Another

major advantage of explicit methods, which is becoming
more important with the emergence of massively parallel
computers, is the ease with which explicit based programs

can be migrated to a parallel compute environment.
Explicit integration is computationally feasible for long

duration problems if the element technologies and
physical element sizes in the discretized model do not
result in prohibitively small time steps. The special

elements developed in this study result in manageable
time steps and thus enable the use of explicit integration.
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Figure 2.  The five elements of the bridge system model. (a) Composite membrane, truss and sway stiffness deck model; (b) Finite
rotation fiber flexure element for the bridge towers; (c) Caisson block with uplift; (d) penalty node-to-node contact for deck
impact; (e)Tension-only two force member with initial stress for cables.

The nonlinear computational elements and algorithms
developed have been incorporated into the special
purpose finite element program SUSPENDERS at the

Lawrence Livermore National Laboratory. A complete
description, including detailed evaluations of element
and software performance, is given in McCallen and
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Astaneh-Asl [17].

3. Implicit/Explicit Global Solution Algorithms

In the numerical simulation of cable supported bridge
systems subjected to dynamic loads, two distinct steps
must be undertaken to obtain the transient solution. The
first step is performance of a static, nonlinear gravity
initialization such that the model obtains the correct
geometric shape of the bridge with appropriate forces  in
the individual bridge deck members, towers, and cable
system. This initialization must take into account the
design objectives and construction sequence of the bridge
as the construction procedure can significantly influence
the gravity induced forces and the overall geometric shape
of the bridge. Once the appropriate gravity configuration
is achieved, the solution can proceed to the dynamic
analysis with the static configuration (member forces and
model geometry) serving as the initial condition state for
the dynamic analysis.

3.1. Implicit Static Solution

In the computational model, the deformation of the bridge
is defined by a vector of global displacement components
{D}. For a given set of statically applied external loads on
the structure {P}, the structure is in a state of equilibrium
if the external loads equilibrate the internal resisting forces
of the structure, denoted {Q ({ D})}, and the forces gener-
ated by any contact across disjoint parts of the structure
(e.g. expansion joints) and contact forces at the caisson/
rock interface, denoted })}.({{ D  Γ In a nonlinear system,
the internal and contact forces are nonlinear functions of
the system displacements. Defining a residual vector
{R ({ D})} as the difference between the various force
components in the direction of each degree of freedom of
the model,

{R ({ D})} = {{ Q ({ D})} - { P} - })}}({{ D  Γ                        (1)

an equilibrium configuration of the structure, denoted
{D*}, results in a null residual vector, i.e. R {D* } = 0. If
{D 

k} is the kth approximation to {D* }, then a Taylor series
expansion of the residual vector about {D 

k} yields,
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Neglecting higher order terms in Eq. (2), and invoking
the fact that {R ({ D* })} = 0, the incremental displacements
are given by,
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The instantaneous stiffness matrix is defined as the
immediate rate of change of the internal resisting and

contact forces with respect to system displacements,
thus,
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and the individual terms of this matrix are given by

Eq. (3). The first matrix in Eq. (3) represents the stiffness
contribution from the structural elements in the bridge
model; the second matrix in Eq. (3) represents the effective

stiffness contribution from the penalty based contact
elements  activated during contact between disjoint parts.

In the absence of contact, the contact stiffness matrix
vanishes. The incremental relationship given by Eq. (4)
provides the basis for equilibrium iterations which yield

incremental  displacements for updating the displacement
vector until the nodal force residuals and incremental

displacements  become small. In the static solution
algorithm, the instantaneous stiffness is completely
reformed for each equilibrium interaction, leading to a full

Newton-Raphson procedure for equilibrium iterations.
Equilibrium iterations proceed until the Euclidean norms

of the residual and incremental displacement vectors
reduce below a   prescribed tolerance. In the SUSPEND-
ERS program, the implicit solution is utilized for gravity

initialization of the bridge system, for other nonlinear static
analyses such as push-over tests for a bridge or bridge

components, and as a diagnostic tool when implementing
new nonlinear elements.

3.2. Explicit Dynamic Solution

The transient bridge solution is based on an explicit

integration scheme which readily admits multiple support
earthquake ground motions. The earthquake ground
motions are defined by ground displacement time

histories at the bridge base support locations referenced
to an identical time frame to preserve phasing information

across the bridge structure. The coupled equations of
motion for the bridge system, constructed from the
assembly of element matrices, are given by,

]})(]{[})(]{[[})(]{[                  tDCtDCtDM rmechfsi
&&&& ++

})})(({{}))}(({{}))}(({{                 tDPtDtDQ igBoundary 
=++ Γ    (6)
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where conceptually ][   fsiC defines the damping due to
fluid-structure interaction and ][   mechC  defines the
mechanical damping. The vector {Q ({D})} represents the
internal resisting forces of the model elements, vector

})}({{ D  Γ  represents the nodal forces due to contact of
disjoint bridge segments and caisson/rock contact, and

)})}(({{ tDP
igBoundary  

   contains the support point forces
generated by applied ground displacements. In Eq. (6), the
fluid-structure interaction damping forces are assumed
proportional to the absolute velocity )}({ tD  &  of the
structure and the mechanical damping forces are assumed
proportional to the relative velocity )}({ tD   r

&  of the
structure.

The specific form assumed for the bridge energy
dissipation, as characterized by the viscous terms in Eq.
(6), has significant implications for efficient implementa-
tion of the explicit integration procedure for the equations
of  motion. First, an appropriate damping form must be
inferred from experimentally identified structural damping
values. The most extensive and broad-band observational
data on suspension bridge damping values is provided in
the Golden Gate Bridge data of Abdel-Ghaffar and Scanlan

[6, 7]. McLamore et al [9] identified the modal damping of
the Newport and William Preston Lane Bridges, and
Brownjohn et al [8] identified the damping of the first few
modes of the Fatih Sultan Mehmet Bridge. The results of
the modal damping observations from these studies are
constructed in graphical form in Figure (3). In each plot,
the experimentally observed damping values are shown as
a function of frequency. The experimental data consistently
exhibits an inverse relationship between modal damping
and modal frequency, the only major difference between
the various bridges being the specific amplitude of the
damping values. In addition to the experimental values, a
solid line is included for each dataset  indicating the
frequency dependency of damping which would be
obtained with an assumption of mass proportional
spectral damping (i.e. [C] = β[M]). For three of the cases
(Golden Gate, Newport, and William Preston), the mass
proportional damping was anchored at the fundamental
mode; for the Fatih Sultan Mehment there was a wider
scatter in the data and an anchor damping value lower
than the damping of the fundamental mode proved to yield
a better fit. For all of the small amplitude vibration data,

Figure 3.  Experimentally observed damping in suspension bridges. (a) Golden Gate Bridge (length = 2738m);  (b) Newport Bridge
(length = 907m);  (c) William  Preston  Lane memorial Bridge  (length = 890m);  (d) Fatih  Sultan  Mehmet  Bridge (length =
1510m); (e) Damping overlay for all four bridges.
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mass proportional damping provides a good representa-
tion of the observed frequency dependency of damping.

For mathematical expediency, and lacking more
specific information about the mechanical and aerodynamic
partitioning of the damping in cable bridges, an assump-
tion of viscous, absolute velocity dependent damping was
assumed in the computational model. Thus, Eq. (6)
simplifies to, 

})}({{]})({[})({][[})(]{[ DDQtDCtDM                Γ+++ &&&

                                             })})(({{     tDP igBoundary =           (7)

In the course of this study, it was found that the use of
strictly mass proportional damping resulted in unphysical
high frequency chatter in the explicit computational
model. This was an artifact of the extremely low damping
which results in short wavelength, high frequency deck

modes if mass proportional damping is used exclusively.

Thus in practice it is necessary to augment the mass

proportional damping with a small degree of stiffness

proportional damping to ensure high frequency modes are

appropriately damped, this issue is essential for explicit

time integration where the higher frequency modes are

resolved in the model. However, with explicit integration,

the Courant stability time step is also adversely impacted

by the damping in the highest frequency mode of the model

[18]. If the damping in the highest frequency mode

becomes large, the time step required to maintain stability

decreases, resulting in excessive computational effort. In

order to achieve the combined objectives of obtaining a

decreasing damping with frequency (as indicated in the

existing observation database), a small amount of damp-

ing in higher frequency modes to limit high frequency

model chatter, and a low amount of damping at the very

highest frequency modes to prevent excessive time step

reduction, a three-term spectral damping representation

was employed,

][][][][][][ 1
                        KMKKMC −γ+β+α=                                 (8)

This form of Caughey damping [19] provides a cubic

variation of modal damping with frequency and the three

coefficients in Eq. (8) can be selected to obtain the desired

spectral damping characteristics.

With stiffness proportional terms included in the

damping matrix, the matrix is non-diagonal and traditional

finit differenceexperssions for the velocities must be modi-

fied to avoid a matrix inversion (Cook et al [18]). To avoid

matrix inversions, and thus preserve the economy of the

explicit integration scheme, the finite difference expres-

sions become,
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The backward difference in Eq. (9) (as apposed to a
central difference) will result in slight accuracy loss in the
integration scheme, which is generally insignificant for
these structures due to the short time step of the explicit
integration scheme.

Combining Eq. (7) through Eq. (9), and introducing seis-
mic excitation as specified ground displacement time his-
tories yields the recursion relationship for displacement,
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where vector }{   gD contains the earthquake ground
motion displacement time histories at the individual bridge
supports, the terms of which are zero except at the bridge
support locations. For the Bay Bridge evaluation, the struc-
ture is founded on bedrock and the support displacement
time histories were obtained directly from synthetic
bedrock motions.

Eq. (11) provides the explicit recursion relationship for
update of the structural model displacements. With the
velocity approximation which has been invoked, and the
fact that the model mass matrix is diagonal due to lumped
mass assumptions, no matrix inversions are required for
the solution of 1}{ +n   D . This explicit integration is condi-
tionally stable, with the maximum time step permitted
being governed by the Courant limit for the discretization
of the particular bridge model at hand. The approximation
invoked in Eq. (9) does slightly effect the stability time
step, which must be accounted for in the selection of the
integration step size [18].

For earthquake ground motions, there are two
fundamental differences between the explicit algorithm
defined in Eq. (11) and traditional seismic analyses
methods. In the explicit formulation, ground motion is
defined in terms of ground displacement time histories
rather than acceleration time histories, and the computed
displacement quantities are absolute displacements rather
than displacements relative to the ground inertial
reference frame.

4. Element Technologies

With careful construction and appropriate validation, it is
possible to develop an accurate reduced-order model of a
bridge system which captures the salient features of the
dynamics of the system, yet results in a significant
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reduction of the global degrees of freedom relative to a
brute-force discretization with a general-purpose finite
element program. The element development was aimed at
significantly reducing the number of equations in the
global bridge model. The Courant time step limit for
stability of the explicit integration scheme depends on the
transit time of a stress wave through the smallest elements
in the bridge model and is thus a function of the physical
dimensions of the elements in the computational model.
To maximize the integration time step, an additional
objective was to construct element technologies which
allowed physically large element dimensions.

4.1. Tower Flexural Fiber Model

A fiber flexural element was developed for characteriza-
tion of the bridge towers. The element incorporates both
geometric and material nonlinearities. The framework for
tracking geometry changes and initial stress inclusion are
common to the bridge deck truss and cable elements
described in subsequent sections, thus these features are
discussed in some detail for the tower element to establish
the element framework.

For three-dimensional bending with finite (large)
rotations, the nonvectorial rotations must be incremen-
tally updated. The flexure element utilizes three local
element coordinate systems to track finite displacements
and the finite rotations of the beam segments. Two local
coordinate systems rotate and translate with the principal

axes of the beam element at each end (the x”, y”, z”, and
x”’, y”’ and z”’ axes in Figure (4)), a third updated
Langrangian system (x’, y’, z’) extends between the
element end nodes and tracks the overall displacement
and rotation of the element. A fundamental assumption of
the element is that incremental rotations occurring between
equilibrium iterations in the implicit solution procedure, or
between time steps in the explicit dynamic solution, are
small and can be transformed vectorially between the local
coordinate systems. This assumption is easily met for
practical problems, particularly with explicit integration
where the time steps are small. The element also assumes
the deformational rotations, for example the rotations
between the x’, y’, and z’ axes and the x”, y”, and z” axes,
are small. Gross rigid-body rotations and translations are
removed via the updated coordinate systems. To include
the initial stress (geometric stiffness) contributions for the
flexural element, which is required for gravity initiation of
the bridge model, it is necessary to include all nonlinear
terms in the strain-displacement relationships. To ensure
efficiency of the element for linear as well as nonlinear
problems, a cubic displacement field approximation was
employed for the transverse displacements of the flexural
element.

Inelasticity in the flexure element is accounted for by
division of the cross section into a number of fiber zones
with uniaxial plasticity defining the normal stress-strain
relationship for each zone, as indicated in Figure (4). The
element stress resultants are determined by integration of

Figure 4. Finite rotation tower fiber flexure element.
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the fiber zone stresses over the cross section of the
flexural element. The evolution of the yield surface is
monitored by tracking the center of the yield region, and a
stress update algorithm was implemented to allow
accurate integration of the stress-strain constitutive law
for large strain increments, including full load reversals.
To ensure path independence of the solution, the
implementation of the plasticity model for the implicit
Newton-Raphson equilibrium iterations employs a stress
integration whereby the element stresses are updated from
the last fully converged equilibrium state. The transforma-
tion between element local and global coordinates is
accomplished through a vector translation of element
forces and displacements based on the direction cosines
of the current updated element coordinate system.
Proceeding from a statement of virtual displacements [17],
the flexural element  matrices in natural coordinates are
given by

{ } { } ξ= ∫
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where [T] is the transformation matrix of direction cosines
for the x’, y’, and z’ coordinate system , [B] is the linear
strain-displacement matrix, [B

G 
({ d})] is the displacement

dependent strain displacement matrix resulting from the

nonlinear strain terms, [F] is the element stress resultants,

and [ ] 
 

 
 

F
ε∂

∂  is the element constitutive matrix. The second

term of Eq. [13] represents the initial stress contribution to

the element stiffness, and with appropriate mathematical
manipulation [17], this matrix can be written as a function
of the current axial force in the member. The element
matrices are evaluated with a three point Lobatto quadra-
ture integration which employs quadrature points at the
extreme ends of the element. Lobatto integration captures
inelasticity occurring at the ends of the element, where
plasticity typically first initiates.

For earthquake simulations, the element stiffness is
only required for the implicit iterations required for the
model gravity initiation. After gravity initiation, the
element internal resisting forces are computed from
Eq. (14) for the explicit integration of the equations of
motion.

The fiber element representation of the cellular Bay
Bridge  tower structure was assessed by comparison with
detailed shell element based models and measured
vibrational data. For this comparison, a detailed shell and

beam element model was constructed for the general
purpose finite element program NIKE3D [20], and a reduced-
order fiber model was constructed for the SUSPENDERS

program as shown in Figure (5). The detailed model used
shell and beam elements to represent the laced members in
the tower diagonals and struts, and discretized the
internal cellular structure of the tower including the
transverse stiffening diaphragms. The fiber model employs
one fiber zone for each cell segment in the tower, for
example, the element uses 62 zones at the base of the
tower.

The first six natural modeshapes of the tower, as
computed by detailed and reduced-order models, are
shown in Figure (5) along with selected tower frequencies
experimentally measured by Carder in 1936. Carder
performed vibrational measurements of the Bay Bridge
towers when the tower construction was completed and
the towers were free standing prior to spinning of the main
cables.

The reduced-order-model provides good estimates of
the tower dynamics, and in light of the potential errors in
the measured data, there is good agreement between the
numerical models and the experimental data of Carder.

4.2. Reduced-Order Deck Model

A truss bridge deck system can demand a prohibitive
number of elements with brute force modeling based on
shell and beam elements. An effective reduced-order model,
which exploits the specific configuration of suspension
bridges, can dramatically reduce computational effort.
The representation of a three-dimensional discrete lattice
truss structure by an equivalent beam-like continuum has
seen wide use in the development of reduced order
models. Abdel Ghaffar [3] utilized this approach in the
development of linear models for suspension bridge
dynamics, and McCallen and Romstad [21] developed
continuum models for lattice structures, including both
geometric and material nonlinearities. For certain bridge
deck configurations, beam-like continua models can
adequately characterize the stiffening truss system in
the mid-deck region of the structure. However, the ability
of continuum based models to capture the localized
effects of complex articulations at the ends of the
stiffening trusses is highly suspect (Avent and Issa [22]).
Accurate continuum representations also become
problematic when the bridge deck system lacks transverse
sway bracing, and the deck is subjected to significant
complex warping deformation. Warping deformations defy
attempts to represent the deformations with simple
beam-like kinematics. The deck model which has been
developed represents a compromise between a highly
efficient, but questionably accurate, continuum model of
the deck system and a prohibitively expensive brute force
discrete shell and beam element model of the deck.
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An accurate reduced-order model of the deck for
a particular bridge must take into consideration the
specific  construction details and load paths in the deck
system. The configuration and connection details in the

two-level deck system of the Bay Bridge made appropriate
reduced-order model construction particularly challeng-
ing. Lacking  transverse sway bracing between the upper
and lower decks, see Figure (6), forces generated between

Figure 5. Detailed shell and beam  element  and  reduced  order  fiber bending element tower models  and  computed  modeshapes
(experimental values shown parenthetically).
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the upper and lower decks must be transferred through
bending of the stiffening truss elements in an inter-deck
sway deformation. In the longitudinal direction, the deck
slab-to-stiffening truss connection occurs through weak
axis bending of the deck beams shown in Figure (7),
providing a very flexible connection between the deck
slabs and the stiffening trusses. The deck roadway
system, consisting of the concrete slab, deck beams, and
stringers, are weakly coupled to the deck stiffening truss
in the longitudinal direction of the bridge, and the full
membrane stuffinesses of the deck slabs are not activated
by transverse and vertical deformations of the stiffening
trusses. The complex kinematic characteristics associated
with deck cross-section warping of this particular deck do
not readily lend this system to accurate characterization
with beam-like continua.

The reduced-order deck model constituents consist of
simple truss elements for the stiffening truss members, an
orthotropic plane stress element for the deck slab and
girder system, and a sway-stiffness element to account for
the transverse bending of the lateral frames composed of
the deck beams and stiffening truss vertical posts, as
shown in Figure (6). The active global degrees of freedom
consist of three translations at each joint of the deck
system. The sway-stiffness element was implemented to
eliminate the need for any rotational degrees of freedom in
the deck model. The capability to accommodate geometric
nonlinearities associated with arbitrarily large displace-
ments was included to capture the effects of large
displacements which can occur in a long bridge during
earthquake motions. Depending on the bridge system, and

the method by which the model is initialized to achieve the
appropriate gravity configuration, gross model geometry
changes and large model displacements must also be
accommodated for gravity initialization of the bridge
model.

The deck truss element shares common features with
the flexural fiber tower model element in terms of the
methodology for including geometric nonlinearities,
displacement tracking, and elasto-plastic inelasticity.
Similar to the tower flexure element, the member motions
are tracked with a local element updated Lagrangian
coordinate system which translates and rotates with the
element through space. For the static initialization
sequence, it is necessary to include the geometric
component of element stiffness for select truss elements
to create a nonsingular initial global stiffness matrix which
allows equilibrium iterations to proceed. To include the
initial geometric stiffness, the user must provide as input
an initial axial tension in selected members of the deck
stiffening truss system. For the Bay Bridge configuration,
for example, an initial tension must be input for all of the
vertical posts of the deck trusses.

A classical elasto-plastic representation provides an
appropriate approximation for modern bridge members
where members and connections are based on sound
inelastic design methods. For some vintage steel laced
members, recent experimental research [23] indicates the
nonlinear behavior can be controlled by very complex
inelastic buckling of the member or gusset plate connec-
tions. The incorporation of complex inelastic buckling of
vintage laced members and connections will be addressed

Figure 6. Reduced order model of the deck system. (a) Sway stiffness element; (b) Slab membrane; (c) Stiffening truss element (all
elements shown in local element updated Lagrangian coordinate systems).
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in future SUSPENDERS developments and incorporated in
the nonlinear material library as appropriate closed form
representations of buckling laced members and pusset
joints are developed.

The deck membrane element, which represents the deck
slab, beams, stringers, and any existing in-plane sway
bracing, consists of a four node, isoparametric, orthotropic
plane stress element. Potential large rigid-body displace-
ments of the element are accounted for with an updated
coordinate system which tracks with the element through
space, as indicated in Figure (7). The element matrices are
based on a classical four node isoparametric formulation.
Selection of appropriate membrane properties was a
difficult problem in the development of the reduced-order
model for the Bay Bridge deck system because of the weak
coupling  between the deck slabs and stiffening trusses,
see Figure (7). The deck membranae element requires
elastic constants which characterize the equivalent
stress-strain behavior of the deck system, because of the

Figure 7. Deck membrane element.  (a)  Element degrees of  freedom and updated Lagrangian coordinate system;  (b)  Upper and
lower deck in-plane models and equivalent membrane.

complex deformations in the deck/truss interaction,
effective membrane properties cannot be easily obtained
with simple first principal analytical solutions. For the Bay
Bridge model, the equivalent membrane elastic properties
were computed numerically by selective loading of
detailed models of deck segments, see Figure (7). The
detailed deck models shown in Figure (7) were constructed
to include the weak connection between the deck system
and the stiffening truss chords. The effective membrane
properties are obtained from the detailed model analysis,
for example the longitudinal membrane effective elastic
modulus is given by

membrane

chords

effective
 A

EAPL

E
   

 

)(2
1

−
= ∆                                              (14)

where 1 ∆  is the stretch of the deck system for an applied
load of P. After determining the appropriate elastic
constants, the membrane element contribution to the
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element internal resisting forces and instantaneous

stiffness are given by McCallen and Astaneh-Asl [17]
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where [E] contains the effective material constants
obtained from the detailed deck segment models. Classical

four point Gaussian quadrature integration is employed
for the natural coordinate integration of the matrices.

The sway-stiffness element accounts for the lateral
sway deformation between the upper and lower decks
resulting from flexure of the frame consisting of the deck

beams and stiffening truss vertical posts. In the deck model
the sway stiffness element is an 8 by 8 stiffness matrix

which relates nodal forces to the lateral sway deformation
of the frame. The element contains four nodes with two
in-plane displacements per node and is placed in the deck

model in addition to the truss elements which represent
the axial stiffnesses of the individual truss posts and

deck beams. The sway and truss elements are shown in
Figure (8). The sway deformation between the decks is
approximated by the summation of angles 1γ  and 2γ

21 γ+γ=γsway                                                                      (17)

where
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The nodal forces associated with sway deformation
can be obtained analytically or numerically by analysis of
the cross section frame with the loading and boundary
conditions shown in Figure (8). For elastic behavior of the
frame, the nodal forces associated with sway are given by
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Combining Eq. (17) through Eq. (20), and utilizing
overall equilibrium relationships between the nodal forces
in Figure (8), the sway element stiffness matrix is given
by
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or

{ } [ ]{ }        dkq s=                                                                      (22)

Figure 8.  Sway stiffness element providing lateral sway resistance.  (a)  Sway and truss elements;  (b)  Determination  of  sway
element nodal forces for a sway displacement.
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where .
W
H=η  An updated Lagrangian coordinate

system tracks with the element to remove large rigid-body
displacements. Eq. (21) provides the sway element nodal
forces in terms of the nodal displacement quantities. The
element matrices in global coordinates are provided by the
transformation between the element instantaneous
updated Lagrangian system and the global system
coordinates

[ ] [ ] }]{[})({         dkdTQ s
T

sway =                                                (23)

[ ] [ ] [ ]})({][})({ dT kdTK         s
T

sway =                                      (24)

To evaluate the accuracy of the reduced order deck
model, a number of comparisons were made between the
reduced-order deck model and a detailed beam and shell
element model of the Bay Bridge deck system. The first
five modes of a simply supported twenty bay segment of
the Bay Bridge deck, as computed from detailed and
reduced-order models, are shown in Figure (9). The mode
shapes computed with the two models exhibited excellent

Figure 9. Natural modeshapes of a twenty bay deck segment form detailed and reduced order models.
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correlation, and the frequencies are within approximately
10 percent for all of the first five modes.

4.3. Bridge Cable Model

Bridge cables are represented with a simple tension-only
two-force member in which the cable element coding does
not permit compression to develop in any cable element.
If the cable element attempts to compress, the element
stiffness and residual contributions are neglected in the
implicit solution and the element forces are neglected in
the explicit solution. An initial stress contribution to the
element instantaneous stiffness is included to render the
initial global tangent stiffness matrix of the model non-
singular during gravity initialization. The procedure
developed to define the initial geometry of the cables is
based on constraining the cables by the initial unstretched
cable length and allowing the Newton-Raphson equilib-
rium iterations to determine the natural sag geometry and
tension of the cables. With the initial unstretched length
of each cable serving as the constraint for the cable sys-
tem model, the definition of the starting cable geometry in
the finite element model is arbitrary and only affects the
number of equilibrium iterations required to achieve the
natural sag.

A SUSPENDERS program simulation of a simple
sagging cable experiment by Irvine and Sinclair [24] based

on this approach is illustrated in Figure (10). The initial
geometry in the finite element model is crudely represented
with two prescribed linear segments of cable elements, the

total length of which exactly equals the unstretched length
of the actual cable. A uniform initial tension guess is

applied as user input to each cable element for initializa-
tion of the initial stress contribution, and once gravity is
applied, full Newton-Raphson equilibrium iterations

achieve the appropriate cable geometry rapidly within five
equilibrium iterations. The individual cable elements

displace through large rigid-body displacements, and the
overall geometry rapidly progresses to the appropriate
hanging cable geometry. The numerical simulation results

precisely matched experimental data for the hanging cable
obtained by Irvine and Sinclair. Application of a point load

was also considered after gravity initialization to emulate
Irvine and Sinclair’s experiment and the simulation model
accurately computed the deformed shape under gravity

plus point loading, as shown in Figure (10).
In the case of the Bay Bridge, the design and construc-

tion objectives included achieving a stress state in which
the chords and diagonals of the stiffening truss were stress

Figure 10. Analysis of a hanging cable. (a) Ten element cable model with initial tension and constrained length; (b) Deformed shape
at each equilibrium iterations; (c) Computed and observed cable geometry under gravity and point load; (d) Computed and
observed cable geometry under gravity and point load.
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free under full gravity dead load. The vertical posts of the
truss were the only gravity stressed members in the deck
truss. This condition was obtained in field construction
by allowing the truss joints to remain loosely tacked
together with construction pins until the deck was entirely
supported from the vertical suspenders, with final riveting
of the joints after the entire deck was suspended. As a
result of this construction sequence, the deck stiffening
truss did not resist the bridge’s gravity load as a
composite structure. This design objective is common for
many lattice deck suspension bridges. On the Bay Bridge,
hydraulic jacking was also employed between the main
cables and the cable saddles atop the towers prior to
application of the deck system to ensure the towers
would be straight, vertical, and free of shear forces and
bending moments at the completion of the construction
sequence.

The computational procedure for model initialization
must emulate this construction sequence. To initialize the
bridge model to the appropriate gravity configuration, an
automated procedure was developed. The procedure first
analyzes the main cables and towers under full bridge dead
load to determine the final main cable elevations under full
gravity load (Figure (11b-c)). For this analysis, the
unstretched length of the main cables is required, and it
can be estimated from the design documents or cable
surveys obtained during bridge construction (Figure
(11a)). Based on the nodal locations from the dead-load
analysis and the final design elevations of the deck
system, the unstretched length of the vertical suspenders
is computed and the initial nodal locations of the deck
nodes are determined, see Figure (11d). This provides the
information necessary for constraining the definition of
the initial undeformed bridge model geometry. The
implicit nonlinear solution procedure is then used with
Newton-Raphson equilibrium iterations until the gravity
load geometry and stress field are achieved.

With the current availability of powerful finite element
mesh generators, it is computationally expedient to
generate a starting model with a parabolic approximation
to the main cable geometry. For most suspension bridges,
the parabolic approximation provides a geometry close to
the correct gravity shape. In the Bay Bridge model genera-
tion, the parabolic shape is computed such that the main
cables have the appropriate unstretched length, and the
initial location of the deck nodes are determined by drop-
ping to an elevation corresponding to the unstretched
length of the vertical suspenders. The chord and diagonal
elements of the truss are inactivated for the gravity initial-
ization, so the deck truss will not contribute stiffness to
the model during application of gravity loads. In addition,
the main cables are allowed to slip horizontally relative to
the tops of the towers, so the towers  will be straight and
subjected to pure axial load at the end of gravity initializa-

tion. Once the gravity load equilibrium iterations are com-
plete, new truss diagonal and chord element lengths are
computed and stored automatically by the SUSPENDERS

program  so that these members are unstressed under the
gravity loads. The gravity deformed shape and tension
stress fields obtained from the static analysis become the
initial  condition state for the transient earthquake compu-
tation. Once the appropriate gravity load configuration is
achieved, the main cables, which were allowed to slip
relative to the towers under gravity initialization to keep
the towers vertical and absent of longitudinal shear loads
(per the construction sequence), are slaved to the top of
the towers to provide cable-to-tower connectivity for
the  transient response analysis. The model developed for
half of the Bay Bridge geometry is shown in Figure (12).
This model initialization procedure ensures that the
bridge computational model will have the correct as-built
bridge geometry, including the appropriate vertical curve
in the main span and the appropriate grade in the side
spans. The cables have the correct geometric shape and
gravity load tensions, the towers will be vertical and
subjected to only axial forces, and the stiffening truss
diagonals and chords will also be stress free at the end of
gravity initialization as required to emulate the as-built
design objective.

4.4. Deck and Caisson Contact Models

Bridge deck systems typically contain a number of
structural discontinuities at interior expansion joints and
at abutments to accommodate thermal deformations. These
discontinuities can have a pronounced influence on the
dynamic response of the bridge system and can result in
significant dynamic impact between disjoint bridge
segments. Observational measurements of the earthquake
response of bridges have indicated the occurrence of large
accelerations and intersegment forces as a result of impact
of adjacent bridge segments [25]. In addition to deck
segment impact, unanchored bridge foundations can
potentially be subjected to rocking and uplift, with mul-
tiple occurrences of impact. For the Bay Bridge, the towers
are placed on large caissons which rest on bedrock, the
caissons are unanchored to the bedrock, and the potential
exists for rocking and uplift of the caissons under strong
ground motion. Foundation rocking can significantly
effect the superstructure response to earthquake ground
motions [26] and should be accounted for in an accurate
numerical simulation.

To simulate deck impact and foundation rocking, a
simple node-to-node contact element was developed for
the SUSPENDERS program which allows two nodes to close
within a specified stand off distance before contact
occurs. The element also admits tensile forces to develop
between the nodes as the nodes separate to allow repre-
sentation of displacement-limiting structural details which
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Figure 11.  Development of a model with appropriate gravity shape and forces. (a) Estimate unstretched length of main cables based
on bridge design and  cable field survey data;  (b)  Generate simple  model geometry with  the  appropriate unstretched
engths; (c) Perform static load analysis of main cables with full dead load of deck system; (d) Based on computed main
cable geometry and design deck elevations, determined stretched lengths of suspenders under gravity load, (e) Gener-
ate a  model with  arbitrary geometry constrained  by unstretched cable  lengths; (f) Perform  implicit  Newton-Raphson
equilibrium iterations for gravity loads until convergence.

can prohibit large separation of two bridge  segments. For
the Bay Bridge, the main suspended spans are connected
to the towers and central anchorage caisson with a slip
joint that couples the deck to the tower or caisson in the
transverse direction, but allows limited longitudinal

motion once static friction of the joint is overcome, as
shown in Figure (13). This construction detail can be
compressive when the deck moves into the caisson or
tensile when the deck pulls away from the caisson.

In the node-to-node contact element, the nodal force
contributions are generated vectorially and translated into
the global bridge geometry based on the current deformed
shape of the bridge system. The contact forces are given
by
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Figure 12. Gravity initialization of the model with different initial model geometries.
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The nodal contact forces are directed colinear along
the line defined by the two contact nodes (Node I and
Node J in Figure (13)) and can be transformed to global
coordinates based on the direction cosines of the line
segment.

Pounding between bridge segments or foundation
rocking with impact can result in abrupt nonlinearities in

Figure 13. Nodal contact in the bridge model. (a) Contact at the deck-to-tower and deck-to-caisson connection; (b) Contact at the
base of a caisson.

the bridge system model. There have been many simple
approximations to contact with various quasi-linearized
gap elements, which are highly suspect in their ability to
accurately represent violent, sudden impacts. Based on
the authors’ practical experience with implicit time integra-
tion finite element programs, the seismic analysis of large
bridges with multiple impacting segments can be quite
challenging with many equilibrium iterations and potential
converge failure for each severe impact event. At best,
recurring pounding significantly detracts from the
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efficiency of implicit time integration schemes. Explicit

time integration, on the other hand, is particularly adept at

accurately tracking impact events, with no detriment to

the algorithm efficiency when severe pounding occurs.

5. Example Application: Bay Bridge Response
 to Near-Field Earthquake Ground Motions

Once a bridge model is appropriately initialized under

gravity loading, eigenvalue analyses can be performed to

determine the natural modeshapes and frequencies of the
structure and the time history response to earthquake
ground motion can be computed. Selected natural modes
of the Bay Bridge obtained from the SUSPENDERS

program are shown in Figure (14). The fundamental mode
consists of transverse motion of a main span and this
concurs with the fundamental mode observed by Carder
in this 1936 field study. The computed modal period also
agrees quite well with the period Carder measured in his
instrumentation survey.

Figure 14.  Bridge vibration characteristics and long period near-field motions. (a) Computed modeshapes (experimental values shown
parenthetically); (b) Computed regional wave propagation at selected times; (c) Synthetic near-field ground motions.
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Figure 15. Near-field ground motions, (a) Comparison of Bay Bridge synthetic record with Chi-Chi earthquake measured record; (b)
Relative motion across the bridge for the synthetic record.

Until very recently, the prevailing engineering wisdom

has been that the lowest frequency, long wavelength modes
of long-span bridges (e.g. the 9 second mode of the Bay
Bridge) are generally not major contributors to the seismic

response of the structure. Arguments offered in support
of this view were based on the notion that the long period

earthquake ground motions do not contain significant
energy in the period range beyond 2 to 3 seconds, and
that the time duration of a typical earthquake is too short

to allow response build-up of these long period modes.
However, the advent of broad-band digital strong motion

instruments and the measurement of a number of
near-field earthquake seismograms have challenged the
traditional thinking. It is now clear that seismic wave

radiation patterns and permanent co-seismic tectonic plate

movements can result in large, long period ground
displacement pulses and that these long period
components can indeed excite the long wavelength modes

of flexible bridge structures.
As an illustrative example of the potential effects

of near field motions, the response of the Bay Bridge to
eighty seconds of simulated ground motions has been
computed. The simulated ground motions at the Bay

Bridge site for a M = 7 Hayward Fault earthquake are shown
in Figure (14) for selected support locations and the

relative displacements across the bridge, as referenced to
the Yerba Bucna Anchorage, are shown in Figure (15),
(see Figure (1) for the Hayward fault proximity to the



An Explicit Integration Framework for Nonlinear Analysis of Suspension Bridges

JSEE: Fall 2000, Vol. 2, No. 4 / 39

Figure 16.  Response of the Bay Bridge system to the synthetic earthquake motions.

bridge). These synthetic motions were computed with a
massively parallel geophysics finite difference wave propa-
gation model (Larsen and Schultz [27], Stidham et al [28])

and include long period displacement pulses and perma-
nent ground displacements resulting from tectonic
motions. The propagation of long period seismic waves

across the region are also shown in Figure (14) at selected
instants of time. For the particular bi-lateral rupture

scenario considered, the ground motions exhibit a large
displacement pulse transverse to the bridge structure with
a permanent displacement offset resulting from tectonic

motion. The relative displacements across the bridge
exhibit a pulse with peak amplitude on the order of 75cm

across the 3400m bridge. These synthetic ground motions
were computed prior to the Chi-Chi earthquake in Taiwan
and it is instructive to compare these records with some of
the Chi-Chi measurements. Figure (15) shows an overlay
of the synthetic Bay Bridge motion with a near-field
Taiwan record and shows remarkably similar waveforms
for the synthetic and real earthquakes.

The transient dynamic response of the bridge to this

particular fault rupture scenario is shown in Figure (16).

The exaggerated bridge displacements (displacement
scale factor = 50) indicate that when the large displace-
ment pulse occurs, the flexible deck cannot react as fast as
the stiff towers and lags behind the tower motion, as the
towers begin to return with the ground displacement in
the opposite direction, the deck has finally begun to
respond and essentially flings through the towers in the
opposite direction. This type of motion imparts significant
energy into the long wavelength modes right at the initia-
tion of the earthquake motions, and is essential the same
response phenomenon described for buildings subjected
to long period motions by Hall et al [29, 30]. This rupture
scenario, as well as a number of other fault rupture
scenarios under study, indicate the important effect long
period motions can play in the bridge response.

The global bridge model in Figure (16) contains 7600
degrees of freedom and time history compute times for 80
seconds of earthquake ground motion require approxi-
mately 7 hours for the full three dimensional simulations of
the Bay Bridge system on a single processor Silicon
Graphics Octane Workstation. This provides for over-night
turnaround of relatively long time duration earthquake
simulations for this large structure.
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6. Conclusions

The special purpose of computational model which has
been developed provides a powerful research tool for
investigating the nonlinear dynamic response character-
istics of suspension bridges. The specialized bridge
elements allow practical exploitation of an explicit time
integration solution of the equations of motion, which
is a reliable and robust algorithm for highly nonlinear
problems. The program can characterize a full bridge
system with a modest number of global degrees of
freedom and seismic simulation solution times on an
desktop workstation are economical enough to allow
efficient parametric studies. The explicit time integration
provides a robust solution framework that will readily
accommodate future implementation of complex nonlinear
material behavior, such as laced member buckling and
connection failures, and multiphysics capabilities such as
direct coupling of fluid-structure interaction. Perhaps
the most important aspect of the explicit integration
framework is that it allows for easy migration of the
SUSPENDERS program to the new generation of massively
parallel computer. The fact that the explicit framework does
not require a large matrix  inversion, and essentially solves
a set of “n” decoupled equations, makes parallel imple-
mentation straightforward. The next major planned
development step for the SUSPENDERS program is a
parallel implementation. It is projected that with new 1000+
processor class machines 80 second nonlinear earthquake
simulations like those demonstrated here will be achiev-
able on the order of 5-10 minutes of wall-clock time.
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