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ABSTRACT: In this paper, an advanced formulation of time-domain
two-dimensional Boundary Element Method (BEM) for linear
elastodynamics is used to carry out site response analysis of topographic
structures subjected to incident P-, SV-, and Rayleigh waves. A
modified set of well behaved full space two-dimensional
elastodynamic convoluted kernels is presented and employed, that
has a higher degree of accuracy than those presented by the previous
researchers. Numerical results are presented, including cases of
half-plane, canyon and ridge sections, subjected to the different body
and surface waves.
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1. Introduction

Nowadays it is well established that surface
topographies can have crucial influences on damage
severity and its spatial distribution during strong
earthquakes. It is apparent that seismic wave
scattering by topographical structures is a complex
problem, which can only be solved accurately,
economically and under realistic conditions, with the
aid of numerical methods.

Site response analysis of topographical structures
could be carried out using one of the following
procedures: Domain type methods such as the Finite
Element Method (FEM); Boundary type methods
such as the Boundary Element Method (BEM); and
Hybrid type methods, which combine the effective
characteristics of two or more methods, such as
the FE/BE method. Formulating the numerical
procedure entirely in time domain, enables one to solve
also non-linear wave propagation problems.

For domains of infinite extensions, the domain
type discretization such as a FE mesh, leads to
wave reflections at the edges of the mesh, which
could be only partly eliminated for some cases by
using the so-called transmitting, silent and non-
reflecting viscous boundaries [1, 2]. Other solutions,
such as the infinite element or the consistent
infinitesimal FE cell methods, because of their
important disadvantage of being formulated in
transformed space, could not be used in nonlinear
dynamic analysis.
  The BEM is a very effective numerical tool for
dynamic analysis of linear elastic bounded and
unbounded media. The method is very attractive
for wave propagation problems, because the
discretization is done only on the boundary, yielding
smaller meshes and systems of equations. Another
advantage is that this method represents efficiently
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in which u i denotes the displacement vector, b i

denotes the body force vector, and c1 and c2 are
the propagational velocities of the longitudal
and transverse waves respectively which are
given by ( ) ,/;/2 2

2
2
1           cc ρµ=ρµ+λ=  with λ and µ

being the  Lame constants and ρ  the mass density..
The corresponding governing boundary integral
equation for an elastic, isotropic, homogeneous
body can be obtained using the well known weighted
residual  method [25] as:
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where Gij and Fij are the transient displacement and
traction kernels, respectively, and represent the
displacements and tractions at a point x at time t due
to a unit point force applied at ξ  and the preceding
time t = 0. The terms Gij*ti and Fij*ui are the Riemann
convolution integrals, ti represents the traction and
c ij  denotes the well known discontinuity term
resulting from the singularity of the Fij kernel. In
Eq. (2), the contributions due to initial conditions
and body forces are neglected. In the case of
seismic loading, assuming that the total displacement
can be splitted into incident (ui

inc.) and scattered
(ui

sc.) components, the above mentioned governing
boundary integral equation should be modified
as follows [15-16, 23]:
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3. Time and Space Integration
 
Implementation of boundary integral Eqs. (2) or
(3) needs approximation in both temporal and
spatial variations of the field variables.
 
3.1 Temporal Integration
 
For temporal integration, the time axis is divided into
N equal steps, so that .tNT  ∆=  Using a linear time
variation of the field variables, the displacements and
tractions are expressed as:
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where ( )τ1M  and ( )τ2M  are linear temporal shape
functions given by:

the outgoing waves through infinite domains,
which is very useful when dealing with scattered waves
by topographical structures. When this method is
applied to problems with semi-infinite domains, there
is no need to model the far field.

Regarding the time domain two-dimensional
BEM analysis of an elastodynamic continuum,
Mansur [3] and Antes [4] were the first ones who
formulated a time-stepping algorithm using two-
dimensional kernels. But their traction kernels were
very complicated and appeared only implicitly in
the BEM formulation. Later Israil and Banerjee
[5-7] derived explicit and much simpler kernels,
which could be more easily implemented in 2D
transient elastodynamic BEM  formulations, and
used these kernels successfully in various non seismic
wave propagation problems. But due to some
inaccuracies in their published kernels, the convoluted
kernels for constant and linear temporal variations
did not reduce to the corresponding elastostatic ones
at very large time steps. Kamalian [8] and Gatmiri and
Kamalian [9,10] modified these two-dimensional
kernels and applied them in a hybrid FEM/BEM
dynamic analysis of non-linear saturated porous
media.

Regarding two-dimensional site response analysis
of topographic structures, to the best knowledge of
the authors, only a few works have been done by the
BEM, which were mostly done in transformed
domains [11-23]. Takemiya and Fujiwara [24] used a
time-domain two-dimensional BEM to analyse the
seismic response of canyons and alluvial basins, but
their formulation was restricted to the scattering of
anti-plane (SH) waves, which involves less
computational effort.

This paper presents the algorithm and the
complete set of modified transient elastodynamic
kernels needed for solving two-dimensional in-plane
(P & SV) wave scattering problems in time domain.
Demonstrating the accuracy and efficiency of the
modified well behaved transient elastodynamic
kernels and also demonstration of the ability to carry
out site response analysis of topographical structures
by this time-stepping BEM are the two essences of
this paper.
 
2. Basic Equations
 
The governing equation for an elastic, isotropic and
homogeneous body with a small amplitude
displacement field can be written as:
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Subscripts 1 and 2 refer to the forward and

backward temporal nodes, respectively, during a
time step. Thus the time integration involves only the
kernels and is expressed by:
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Combining this and a similar expression for the
F-kernels in Eq. (2), the convoluted BEM equation
for linear temporal variation is:
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Eq. (7) can alternately be written as:
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Eq. (8) has the advantage that the apparent

singularity terms at the wave fronts in the F-kernels
(of order r-1/2) vanish and hence its spatial integration
is straightforward.
 
3.2. Spatial Integration
 
The geometry is modelled with isoparametric
quadratic elements. Using the shape functions ( )ηkN
in the intrinsic co-ordinates ( )η  of the element, after
spatial discretization, Eq. (8) transforms into:

( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )
∑ ∑

∫

∫

= = −−+

−−+





















η⋅⋅η⋅+⋅

−η⋅⋅η⋅+⋅

=ξ⋅

N

n

Q

q
k

nN
ij

nN
ij

n
ik

k
nN

ij
nN

ij
n

ik

N
iij

q

q

dJNrFrFU

dJNrGrGT

   

uc

1 1
2

1
1

2
1

1

Γ

Γ

(9)

where Q is the total number of boundary elements
and |J| is the Jacobian of transformation. It should

be mentioned that the transient kernel 1
1ijG

 and 1
1ijF

have the same  type and order of singularity as
their corresponding elastostatic kernels. The
first (weak) singular integral could be accurately
evaluated using the Gaussian normal quadrature
rule, provided an intelligent subsegmentation with
suitable mapping is adopted to make the kernel-shape
function-Jacobian product well behaved over each
sub-segment. The second (strong) singular integral
is evaluated indirectly using the concept of rigid
body motion:
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The diagonal 2×2 block of the assembled 1
1ijF

matrix contains the tensor ci j as well as the first
(singular) integral on the right hand side of Eq. (10).
The evaluation of this diagonal block using the
technique of rigid body motions is well known. The
second (non-singular) integral of Eq. (10) could be
easily evaluated using the Gaussian normal quadrature
rule. It should be mentioned that using the technique
of rigid body motion requires that the body has a
closed boundary. Hence for half plane problems, the
region of interest must be enclosed by fictitious
boundary elements known as "enclosing elements"
[5-7, 26]. Using this scheme, the sum of the first
two terms on the right hand side of Eq. (10) should
be evaluated by the summation of non-singular
integrations of the static traction kernel static

ijF  over all
the elements of the modelled boundary as well as the
enclosing elements.

3.3. Solution Procedure
 
By sequentially writing Eq. (9) for each of the
boundary nodes, the assembled system of equation
takes the following matrix form:

( )
( )

0
.

.

1
2

1
1

2
1

1
=















+−

+
∑
= −−+

−−+
N

n nnNnN

nnNnN

        

        

 
UFF

TGG

                            (11)

 
By transferring all known terms to the right side it

becomes:

NNN
   ZTGUF += .. 1

1
1
1                                      (12a)

 
where NZ  includes both effects of the past dynamic
history and of the incident motion on the current
time node:



38 / JSEE: Summer 2003, Vol. 5, No. 2

M. Kamalian, et al

( )
( )

Ninc
N

n nnNnN

nnNnN
N

         

         

 .
1

1
2

1
1

2
1

1

.

.
U

UFF

TGG
Z +















+−

+
= ∑

−

= −−+

−−+

           (12b)

 
Eq. (12a) can be solved for the unknown

displacement values using any standard matrix
solver.

4. Modified Elastodynamic Kernels
 
The two-dimensional full space elastodynamic
kernels 
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modified versions of those proposed in reference
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The coefficients Pk, Qk and Sk are defined as:
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and the coefficients A1, A2 and A3 are given as:
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In evaluating the above terms the causality
condition must always be satisfied, i.e. the time-related
terms can not be negative. Because the contribution to
each of the longitudal and transverse waves is null, if
the wave has not reached the field point.

It should be mentioned that in Israil and
Banerjee’s proposed expressions for the above
mentioned transient kernels [5-7], the third term of
Eq. (13a) lacked the coefficient ( )2/.   rtc   k ∆ and the
second term of Eq. (13b) lacked the coefficient
(2/3). As indicated in references 5 to 7, at very large
time steps, the convoluted transient kernels (for
N = n =1) should reduce to their corresponding
elastostatic ones. Table (1) compares the limit
values of Israil and Banerjee’s convoluted traction
kernels [6, 7] at very large time steps with those
evaluated by Eq. (13), for a medium with shear



On Time-Domain Two-Dimensional Site Response Analysis of Topographic Structures by BEM

JSEE: Summer 2003, Vol. 5, No. 2 / 39

modulus of 900Mpa, Poisson ratio of 1/3 and mass
density of 2.00t/m3. The source is located at (2, 0),
the quadratic element consists of nodes (4, 2), (3, 3)
and (2, 4), and the receiver is located at (3, 3).  As can
be seen, Israil and Banerjee’s convoluted traction
kernels [6, 7] do not reduce to their corresponding
elastostatic ones, whereas those evaluated by Eq. (13)
do. The elastodynamic kernels Gij1,2

N+1-n and Fij1,2
N+1-n

which are modified versions of those proposed in
reference [5] are given in Appendix (I).

homogeneous half-plane subjected to vertical
propagating harmonic incident SV and P waves with
a predominant frequency of 1.59Hz and maximum
amplitude of 0.001m. The shear wave velocity of
the medium is 223.3m/s, its Poisson ratio is 1/3
and its mass density is 2.00t/m3. 35 quadratic
boundary elements were used in order to discretize
the free surface. Figure (2) compares the
horizontal displacement time history obtained
at the ground surface with the analytically
obtained free field motion [27], in the case of SV-
type incident wave. As can be seen, there exists an
excellent agreement between the obtained results.
The figure also shows that as expected, the
vertical displacement is zero. The same results
with horizontal and vertical displacements inter-
changed in Figure (2) are obtained, when the  case of
P-type incident wave is considered.

Table 1. Convoluted traction kernels at large time steps.

Figure 2. Analytical and numerical obtained free field motions
in the case of the SV incident wave.

Figure 1. BEM idealization of the half-plane.

5. Numerical Applications
 
The above formulation has been implemented in a
general purpose two-dimensional nonlinear two-
phase BEM/FEM code named as HYBRID [8-10].
Problems can be solved either by BEM, FEM or a
combination of them. The numerical examples of
this section are designed to demonstrate the accuracy
and efficiency of the modified well behaved
two-dimensional transient elastodynamic kernels
and also the ability to carry out site response
analysis of topographical structures by the presented
time-stepping BEM.
 
5.1. Free Field Motion of Half-Space
 
The purpose of this example is to illustrate the
applicability and accuracy of the presented BEM
formulation in performing site response analysis of
linear elastic regular unbounded regions. Figure (1)
shows the geometry used for the solution of a

5.2. Semi Circular Shaped Canyon
 
The purpose of this example is to illustrate the
applicability and accuracy of the presented BEM
formulation in performing site response analysis of
canyon structures. Figure (3) shows a semi circular
canyon subjected to vertically propagating SV
and P waves of the Ricker type:

[ ] 2
0))((2

0))((21)( ttf
p

pettf tf   
−⋅⋅π−−⋅⋅π⋅−=

fp and t0 denote the predominant frequency and
an appropriate time shift parameter, respectively.
This problem was studied in a dimensionless form
by Wong [11], Dravinski and Mossessian [12],
Mossessian and Dravinski [13], Kawase [15] and
Sanchez-Sesma and Campillo [17] for purely

nN
ij

nN
ij   FF −−+ + 2

1
1                           ( 

* -10-2)  
References 

1--1 1--2 2--1 2--2  
Elastostatic [25] 1.81 2.59 1.44 7.19  
Eq. (13) 1.81 2.59 1.45 7.19  
Israil & Banerjee -0.034 1.78 2.92 9.04  
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elastic or weakly inelastic media. The canyon has a
radius of (r), a shear wave velocity of (c2) and a
Poisson’s ratio of 1/3. The problem is solved using
123 quadratic elements and the results are demonstrated
as spectral amplifications versus normalized
frequencies ( )2/  cr    πω=Ω .

Figure 4. Amplification of surface displacements for  a  semi
circular canyon in the case of Ω =0.5. The solid and
dashed lines represent  the  vertical  and  horizontal
components of  the present study.  The triangle and
star symbols  represent the vertical  and  horizontal
components obtained by Wong [11] respectively. The
square and circle symbols represent the vertical and
horizontal components  obtained by  Dravinski  and
Mossessian [12] respectively. The lozenge and plus
symbols   represent   the   vertical   and   horizontal
components obtained by Mossessian and Dravinski
[13] respectively.

Figure 5. Amplification  of surface  displacements for  a  semi
circular canyon in  the  case  of =Ω 2.0.  The  solid
and dashed lines represent the vertical and horizontal
components of the present study. The  triangle  and
star symbols represent the vertical  and  horizontal
components obtained by Wong [11] respectively. The
square and  circle  symbols  represent  the  vertical
and horizontal components  obtained  by Sanches-
Sesma and Campillo [17]  respectively. The  lozenge
and   plus   symbols   represent   the   vertical   and
horizontal  components  obtained  by  Kawase [15]
respectively.

Figure 3. Geometry  and  discretization  of  the  semi  circular
canyon and the half-plane.

and P waves, there exist an excellent agreement for
both vertical and horizontal components. Figure (5)
too, compares the spectral amplifications obtained
in the present study with those obtained by Wong
[11], Kawase [15] and Sanchez-Sesma & Campillo
[17] for a normalized frequency of 2.0. There exist
too, in both cases of SV and P waves, an excellent
agreement for both vertical and horizontal
components.

5.3. Semi Sine Shaped Ridge

The purpose of this example is to illustrate
the applicability and accuracy of the presented
BEM formulation in performing site response
analysis of ridge structures. A long semi-sine
shaped cross section ridge, as shown in Figure (6)
is subjected to the vertically propagating Ricker
type SV wave of Figure (7). The Ricker wave has
a predominant frequency of 3Hz and maximum
amplitude of 1mm. The ridge is symmetric with a
half width of 200m and a height of 100m. The
shear wave velocity is 800m/s, the Poisson ratio is
1/3 and the mass density is 2.22t/m3. The problem
is solved twice using two methods: Once with the

Figure (4) compares the spectral amplifications
obtained in the present study with those obtained by
Wong [11], Dravinski and Mossessian [12] and
Mossessian and Dravinski [13] for a normalized
frequency of 0.5. As can be seen, in both cases of SV
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BE method and once with a hybrid BE/FE
method. In the first case 178 quadratic boundary
elements and in the second case 140 eight
nodded cubic finite elements and 164 quadratic
boundary elements were used. Figures (8) and
(9) compare the obtained displacements at top
and base of the ridge respectively. As can be seen,
there exists a very good agreement between the
obtained results.

5.4. Surface Loaded Elastic Half-Plane
 
The purpose of this example is to demonstrate the
ability of the presented BEM formulation to show
generation of Rayleigh waves in a loaded elastic half-
plane. The analytical treatment of the problem was
given by Lamb [28]. The elastic half-plane shown in
Figure (10) is loaded with a stress field, the spatial
and temporal variations of which are triangular.
The triangular spatial distribution is chosen to
simulate a line load (in 2D) while the triangular pulse
simulates a delta pulse time. The discretization is
extended up to a distance of 22b, where b is the half-
width of the loaded area. 24 quadratic elements are
used in order to discretize the free surface. The

Figure 6. Geometry and discretization of the semi sine shaped
ridge and the half-plane. Figure 8. Horizontal  displacement   at  the  top  of  the  ridge:

comparison of BEM and hybrid results.

Figure 9. Horizontal and vertical displacement at the base  of
the ridge: comparison of BEM and hybrid results.

Figure 10. BEM idealization of the loaded half-plane.

Figure 7. Incident Ricker type motion.

region has a modulus of elasticity of E=330Mpa, a
Poisson’s ratio of ν = 0.25 and a mass density
2.04t/m3. The maximum load intensity is 100Kpa and
its duration is 0.02 second.

Figure (11) shows the vertical and horizontal
displacements of point A (3b,0) on the free surface,
obtained by the present formulation using two
different time steps. Excellent agreement is noticed
between the results. The normalized horizontal and
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vertical displacements of points A, B (6b,0) and
C (9b,0) are compared to each other in Figures (12)
and (13) respectively. The normalized displacements
are obtained by multiplying the corresponding
displacement components by ( )          Qcx ..2/.. 2µπ , where
Q denote the magnitude of the triangular pulse.
The normalized time is defined by c2.t/b. As
expected, Figures (12) and (13) show that as the
point is farther away from the loaded region, the
results converge towards Lamb’s solution [28],
indicating that with increasing distance, the load
appears to be a point load.

6. Conclusion
 
In this paper it is shown that the advanced time
stepping BEM could be used in order to perform
transient two-dimensional site response analysis of
topographic structures. A modified set of full-space
transient two-dimensional elastodynamic kernels is
presented and applied. The accuracy, efficiency and
applicability of the formulation are demonstrated
through a number of numerical transient in-plane
wave scattering examples. The presented algorithm
can be easily combined with the finite element
method in order to carry out site response analysis
of nonlinear media.
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Appendix I- Other Elastodynamic Kernels
 
The elastodynamic kernels G ij1,2

N+1-n and Fij1,2
N+1-n

(Eqs. (6) and (7)) which are the modified versions of

those  proposed in reference [5] are given as below:
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The coefficients kα  and kβ  are given as:

2,1;1& 2  k    
r

zc
kk

k
k =−α=β

⋅
=α

ti Traction Components 

ui Displacement 

bi Total Body Force 

? Mass Density 

c1,2 Longitudinal and Transverse Wave Velocities 

? and µ Lame Coefficients 

r Distance between Source and Receiver 

t, ? t Time, Time Increment 

Nm Shape Functions of Element (m) 

M1(t) and M2(t) Linear Temporal Shape Functions 

Gij and Fij Elastodynamic Fundamental Solutions 

Gij1
N+1-n + Gij2

N-n and Fij1
N+1-n + Fij2

N-n Elastodynamic Convoluted Transient Kernels 

G1
N+1-n + G2

N-n and F1
N+1-n + F2

N-n Elastodynamic Kernel Tensors 

Ut+?t Displacement Vector at Time t+ ?t 

 

Appendix II- Notation

The following symbols are used in this paper:


