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Increasing our understanding of the earth's layering characteristics at an engineer-
ing scale is crucial for the optimal design of tall buildings, important industrial
facilities, and lifelines infrastructures. The most important characteristics that can
be measured by the seismic refraction method are the speed of longitudinal and
transverse seismic waves. In addition, determining the thickness of layers up to
depth of 150 m is another capability of this method. In this research, the classical
refraction seismic method has been compared with methods based on artificial
intelligence techniques with emphasis on two types of fully connected and
convolution techniques. The results of this research show that by replacing the
neural network that fits the characteristics of the subsurface layers instead of using
classical inversion methods, the accuracy of classical inversion methods can be
achieved in much less time. Fully connected and convolutional neural networks
are highly capable for identifying geological structures whose measurement data
is contaminated with noise, with acceptable accuracy without pre-processing.
Therefore, the proposed method, in addition to the ability to detect the arrival
time of seismic phases in noisy signals and the time-consuming process of manual
processing, is likely to be useful for identifying complex geological formations.
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ABSTRACT

1. Introduction

Exploration geophysics is usually divided in two
categories: seismic and non-seismic method. Seismic
methods are classified into seismic reflection
and seismic refraction subdivisions. In the seismic
reflection method, the reflection of seismic waves
from layers with a sudden change in speed is used.
While in the refraction seismic method, the rays pass
to the interface of two layers with a critical angle of
incidence and travel a certain distance with the speed
of the lower layer as a head wave (refraction wave)
and then arrive to the receiver at the free surface.
The use of reflection and refraction seismic methods
for exploration purposes from sallow surface depth

Research Paper

to a depth of about 50 km is common in the
engineering scale, oil exploration and crustal
structure studies. These processes can be carried out
through three subdivisions [1]:
1) near surface studies (geotechnical explorations,

underground layering and detection of under-
ground cavities up to a depth of several meters,
etc.);

2) medium depth exploration entitled hydrocarbon
reservoirs studies; and

3) identification of deep layers of the crust.
Major seismic studies with the aim of preparing a

subsurface image include the following steps [2-3]:
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1) Design of seismic operations;
2) seismic data acquisition;
3) data processing to generate optimum velocity

model and seismic section;
4) interpretation of results and seismic sections to

identify different seismic.
Seismic exploration projects, in all four stages

above, are very costly and time consuming. There-
fore, any effort to reduce costs and increase
economic efficiency in various stages of project
will be very valuable and desirable. In particular,
seismic and tomography inversion is a time-con-
suming procedure with a high processing cost in
practical projects. Sometimes a large amount of
processing is done sequentially to achieve conver-
gence of results. These processing costs increase
dramatically for new and updated methods. In
addition to the challenges of seismic data pro-
cessing, other complex difficulties such as noise
effects, hidden layers and blind zones should not be
overlooked.

This research deals with step (3) and processing
stage that aims to make the optimum velocity
structure model, easy, and economical. The science
of Artificial Intelligence (AI), (machine intelligence),
deals with the concept of intelligence in man-made
machines and their ways of making them intelligent,
and tries to recreate and customize an efficient
balance of intelligence as a substitute for human
natural intelligence. From this point of view,
artificial intelligence refers to systems that can
show reactions similar to intelligent human
behavior, which is referred to as deep learning. In
this new paradigm, instead of using the rules made
by the human mind (which are represented in the
form of a differential equation or an optimization
problem in solving direct and inverse problems),
an artificial brain is designed based on appropriate
rules and observation. In the last five decades, the
application of artificial intelligence has been
assigned a special place in most branches of
human sciences and techniques. The use of neural
networks in exploratory methods is worthy of
follow-up and investi- gation for the following
reasons:
1. Geophysical exploration methods (in different

stages, including inversion) are very time-con-
suming and have a high processing cost. It

seems that artificial intelligence models, in-
dependently or in combination with classical
inversion methods, provide the possibility of
reducing processing costs. Also, empowering
the classic methods of geophysical explorations
with the help of artificial intelligence tools will
be the  basis for the use of complex methods in
seismic surveys, which will greatly help to
reduce the costs of such explorations.

2. There are various technical problems in seismic
refraction and reflection methods (especially in
identifying complex subsurface models, and
anomalies, heterogeneities, and underground
cavities). Identifying and categorizing these
challenges on the one hand, and the possibility of
reducing or eliminating them with the help of
artificial intelligence tools, is a worthy effort

3. The ability of artificial intelligence and deep
learning methods in near-surface inversion
and refraction seismic methods has not been
investigated deeply. From this point of view, it
is necessary to investigate the effectiveness
of this new paradigm in reducing processing
costs and solving the technical challenges of
identifying underground structures near the
surface.
In this study, our goal is to identify suitable

structures of artificial neural network and deep
learning in inversion of data collected with refraction
seismic method. The general results show the
ability of proposed technique to reduce processing
time and its cost.  Obviously, this will be a way
to solve the practical challenges of refraction
seismology.

2. Literature review

In the recent years, artificial intelligence has
been widely used and studied in reflection seismol-
ogy and hydrocarbon reservoir exploration [4].
These studies are followed in the three areas;
simulation of wave propagation and generation of
synthetic seismic data, seismic imaging and inverse
problems (velocity model building), and seismic
interpretation (identification of seismic events,
faults and geological structural features, etc.).
Significant development in computation speed,
along with the enhanced levels of accuracy and
computational robustness, has opened a clear
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perspective towards such studies in all the three
fields.

The promising results obtained in seismic
inversion are now extended to newer research
areas such as three-dimensional data processing,
enhanced feature-extraction procedures, combined
FWI-based methods, etc. Application of deep
learning (DL) algorithms in different perspectives
of seismology, seismic imaging and exploration,
geophysical inversions, etc. independently or in
combination with classical methods, has proved to
significantly reduce time and costs in the processing,
as well as enhancing the quality of results. Also,
classical geotechnical investigation methods,
equipped with artificial intelligence tools, have
enabled the application of simpler methods and
calculations, which efficiently reduce the costs for
geophysical surveys. In some studies, a variety of
methods have been proposed to combine modeling
approaches based on physical laws and machine
learning techniques, such as using the physical
loss function to make deep learning models com-
patible with physical limitations [5]. Artificial
neural networks have been quite successful in
recognizing and reconstructing structural under
ground patterns. This allows them to be used to
identify and classify subsurface images.

Convolutional Neural Networks (CNN) have
provided rapid advances in the classification and
recognition of objects in images [6]. By training the
convolutional neural network with the help of
three-dimensional seismic data, Wrona et al. [7]
obtained a significant reduction in the interpretation
time to detect faults and salt domes out of geological
structures. Hateley et al. [8] has proposed a DL
algorithm for detecting subsurface seismic lines.

Exclusive networks for some seismological
tasks such as fault detection [9], earthquake
detection [10], depth detection [11], and seismic
phase arrival time [12] have been proposed. Also,
with the help of deep learning, it is possible to
achieve the highest signal-to-noise ratio (PSNR)
in seismic data while maintaining very useful
information in both qualitative and quantitative
aspects, compared to other methods [13]. In
seismic early warning systems (EEWs), DL
techniques provide opportunities to extract and
exploit the characteristics of the full waveform. A

new earthquake rapid warning has been able to be
issued with confidence after 4 seconds from the
arrival of the initial P wave [14].

As other applications to geophysical inversion
techniques, CNNs have now been able to provide
an extensible framework for identifying ground-
water reservoirs using seismic data. Key parameters
such as the aquifer volume, water level, etc. may
now be estimated from seismic data, which were not
previously possible with seismic tomography or
reflection procedures [15].

In addition, real-time determination of the focal
mechanism of the earthquake source has been done
by introducing a new method of deep learning,
namely the focal mechanism network (FMNet) [16].
This network has been trained with 787320 artificial
data and has been able to successfully calculate and
present the focal mechanism of four earthquakes
with a magnitude of 5.4 Mw. After receiving the
data in less than 200 milliseconds, the network
reliably predicted the focal mechanism of the
source with a single processor. In another study, a
convolutional neural network was designed and
proposed to  identify and evaluate underwater
barriers. Numerical solution of the sound wave
equation has been used to generate a sufficient
amount of well-qualified data to train the network.
Finally, it is possible to detect the position and
geometry of any unknown dispersant in just a few
milliseconds [17].

The use of neural networks in seismic refraction
surveying methods, however, has not yet found a
special place. As one of the few examples, in a
research by Engelsfeld et al. [18], using the seismic
refraction method, the effect of the presence of a
void in a 2D two-layer geological model was
investigated. The first wave arrivals are obtained
to determine the position and size of circular voids.
The application of these relationships in a natural
rock environment has been tested and while con-
firming the accuracy of the method, its efficiency for
detecting non-circular cavities has also been
shown. The effect of different cavities on the
propagation of the Rayleigh waves and the longi-
tudinal P waves has been investigated with the
help of synthetic traces generated by finite element
models for cavities in different dimensions and
depths [19].
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3. Research Methodology

The research methodology is described in
following three consecutive sections. In the first
subsection, the method of constructing training data
is introduced. In the second subsection, network
design and selected architectures will be discussed;
in the final subsection, the training and testing
process is introduced.

3.1. Training Data Construction

In order to train, test and validate a neural
network, a large amount of data is required. Since
this volume of data may not practically be available
by field acquisition, numerical simulation might
rather be employed for the purpose. In this research,
propagation of rays from the source through the
near-surface substrates and generation of synthetic
traces is simulated by a simple ray-tracing pro-
cedure, as will be explained as follows: The arrival
times of direct, refracted and reflected rays to any
receiver at a certain distance from the source are
calculated. The attenuated Ricker wavelets are then
shifted according to the arrival times for any receiver
to form its regarding main trace. An appropriate
level of White noise is then added to the signal to
construct the final trace.

For the present ray-tracing simulation, it is
assumed that underground velocity increases with
deeper layers. Waves are propagated from a source
on the earth's surface to a distance of x where is
recorded by a receiver (Figure 1a). Based on the
distance between the first receiver and the source,

the first arrivals of seismic energy may be direct or
refracted waves (Figure 1b). Traces may also
contain reflective phases as well, which provide
additional information from underground layers,
e.g. the presence of a layer with a velocity lower
than the upper layer, which, of course, may not be
revealed by refractive waves.

Typically, the length of the seismic profile should
be more than four times the desired depth on the
engineering scale, the maximum length of the
seismic profile is less than 150 m, and the distance
between the seismic receivers is determined
differently depending on the amount of energy
released from the source. For near-surface explora-
tion, a distance of 5 m between receivers is suitable
to detect anomalies with dimensions up to 2.5 m.

In this research, ray tracing process is applied by
coding a MATHEMATICA-12 package named as
Simulation, for which the stratification geometry,
velocity model, receivers (geophones) arrangement,
and noise level are considered as inputs. The
package generates the received trace ( )A t  at any
arbitrary location x, as the output, by the following
relation:

0( ; ) = ψ( - ) + ( ) A x t A t t N t                                  (1)

where ψ  is the Ricker wavelet to model the source,
A denotes the attenuated wave amplitude at the
receiver, and ( )N t  is the noise function. 0t  is the
arrival time of the wave to the receiver, which may
represent any of the direct, refracted or reflected
waves based on the stratified media. In the follow-
ing, the calculation of these parameters in the

Figure 1. (a) Different rays in seismic refraction theory, (b) Different ray arrivals based on distance between receiver and source.



JSEE / Vol. 22, No. 4, 2020 33

Utilization of Neural Network in Seismic Refraction Data Processing

program is introduced.

3.1.1. Arrival Time

For a single horizontal layer of thickness z located
on the infinite layer, the arrival time for the seismic
wave to the receiver at a distance x from the source
is obtained as:

2 2
2 1

2 1 2

2  
 

z v vxt
v v v

−
= +                                          (2)

where 1v  and 2v  are the wave velocities for the first
and second layers, respectively. Calculating the
arrival times for reflective and direct waves is simple
and is not reported here.

3.1.2. Amplitude

Seismic wave amplitude changes during propa-
gation for various reasons. An important change
is attenuation, due to two types of geometric and
intrinsic damping mechanisms. In geometric attenu-
ation, as the wave propagates, energy of the
wavefront decreases as 2r  for spherical waves and
as 1r  for surface waves, where r is the wave pro-
pagation distance. Thus, the amplitude A of the
surface wave, dealt with in the seismic refraction
method, decreases from amplitude 0A  at source as:

0 /
 

A A r=                                                         (3)

Attenuation of seismic waves due to inherent
inelastic properties of the earth, such as mineral
fractures, shear heating at the crystal boundaries,
movements of liquids within cracks, or those created
by refraction, reflection, and scattering, is called
intrinsic attenuation. Inherent attenuation is
simulated by the following relation:

0 

xe A A−α =                                                       (4)

where α  is called the absorption coefficient or
attenuation factor, which is the inverse of the quality
factor and varies for different materials. Considering
both geometric and intrinsic attenuations, the
amplitude of the seismic wave, as it moves away
from the source, is as follows:

0 xAA e
x

−α=                                                       (5)

3.1.3. Noise

The accuracy of the geophone readings is strongly

affected by the noise level. Noises in seismic
data are generally divided into two categories.
(1) Incoherent and random noise as a disturbance
in amplitude which lacks any special order or
coherence in the record. These random/white noises
do not emanate from seismic energy sources;
rather, they result from activities in the environment.
This type of noise can be generated by trucks,
vehicles, and people in the study area, as well as by
near-surface scattering, wind, rain, power lines, and
even animal traffic [20]. (2) Coherent noise that
may add a redundant level of energy to the initial
wave, so that a fixed phase from one trace to
another is observed. Multiple reflections, surface
waves such as ground rolls, air waves, coherent
scattered waves, etc. are coherent noises that are
usually present within seismic data. The source of
seismic waves may cause some spatial cohesive
noises as well. In this research, random white noise
is only dealt with.

3.2. Network Architecture Design

After providing the training, testing and
evaluation data, we may focus on network
architecture design. In this research, a simple and
a CNN network model are employed.

3.2.1. Simple Neural Network

As a first step, the simple model with a minimal
architecture consisting of successive fully-connected
layers is used, which focuses on global learning
and ignores local patterns. Figure (2) illustrates a
schematic view of the network with the dimensions
of its middle layers. The output of the network is a
three-component vector representing the depth of
the first underground layer, as well as the velocities

Figure 2. Neural network with seven fully-connected layers
to fit the ground velocity model. The input is a matrix of
21×1001, and the output is a vector with 3 entries denoting
v1, v2 and z. Dimension of hidden layer are selected by a
trial-and-error procedure.
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of the upper and lower ones. For training/test data
simulation, a line of 21 receivers with 5 m distances
is considered. Traces are simulated as Ricker
wavelets of dilation 0.5, with different sampling
rates as will be reported later, for a total period of
10 seconds; thus, inputs to the neural networks are
21x nt matrices where the number of trace points nt

depends on the time resolution ∆ t.

3.2.2. Convolutional Neural Network

As a next step, the more sophisticated con-
volutional neural network CNN is used. Such
networks are very efficient for detecting image
patterns from pixel images with minimal prepro-
cessing. CNNs identify pattern is in two steps. At
the first step, the most important features are
extracted (Feature Extraction) through convolution
and pooling layers. Then, in the second step, a
fully-connected layer performs the main task of
identifying objects for classification.

In this research, a multi-layer CNN-based
model is presented as a regression model for
underground velocities out of linear-arranged
traces introduced as an image. Figure (3) shows
the proposed CNN, which consists of the following
layers:
1. Convolution layer, in which correlation (rather

than convolution) is performed by applying
special filters. Such filters mark locales in
the image with high similarity to special local
patterns.

2. Relu rectifier, as a function that resets all nega-
tive pixels for a better highlighting of local
patterns.

3. Pooling layer, which is used to reduce the size of
the input, increase the speed of calculations and
more reliable detection of the features.

4. Fully-connected layer, to which all neurons of
the previous layer are connected. The fully-
connected layer combines the features to
conclude the class which the input image belongs
to.
CNNs need the inputs to be introduced as

images; therefore, the input line of traces is converted
to a gray-scale image with the dimensions of
101x21x1 for  ∆ t = 0.1. The first layer (convolution)
generates an output of a 99x5x19 array (also using
the ramp activator function) through a correlation
process and hands it over to the next pooling layer
with a 2x2 filter and {2,2} stride, which produces an
output of 49x9x5 array. The second convolution-
pooling layers reduce the array to a 10x2x22 one,
which is passed to the fully-connected layer where a
10 and a final 3-element vector is generated as a
prediction for the velocity of the two underground
layers and the thickness of the first layer.

3.2. Network Training Process

In this research, a total number of 50 images for
input and 10 to 20 images for test data are produced.
Standard deviations for velocities and depth are
respectively considered as 50 and 0.1.  It is notable
that the training procedure is sensitive to depth
variations. After preparing the training data and
designing the appropriate network model, it is time
to train the network, which requires specifying the
loss function and the optimization algorithm. In
this study, ADAM optimizer was used to update
the weights. The method is popular due to its
advantages over the standard Stochastic Gradient
Descent algorithm. In this method, different
learning rates are used for different parameters.
These rates are adjusted based on the average
recent values of the weight gradients. The algorithm
works well for online and non-stationary problems.
It should be mentioned that the design, training
and testing of neural networks in this research
are performed through programming in the
MATHEMATICA software.

4. Results and Discussion

In this part, some examples of subsurface

Figure 3. CNN to fit the ground velocity model. The input is a
matrix of 21×1001, and the output is a vector with three entries
denoting v1, v2  and z. Dimension of hidden layer are selected by
a trial-and-error procedure.
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structure are investigated with the proposed neural
network method as well as the seismic refraction
method. In all these samples, in order to construct
the training data, a set of pre-assumed velocity
models as well as their corresponding outputs
(traces) for a two-layer underground model was
provided with the help of the package Simulation
written in MATHEMATICA. Figure (4) shows an
example of a synthetic generated trace using
simple ray tracing relations.

Figure 5. Convergence diagram for neural network with
three-way output. Orange and Blue curves denote learning
convergence for train and test data, respectively.

Figure 4. Synthetic seismic traces simulated for a two-layer
underground model. Attenuated direct, refracted and reflected
signals appear in the traces.

The length of the seismic profile is 100 m for
this simulation, which is common in shallow seismic
refraction operations, and the distance between the
synthetic receivers is considered as 5 m to enhance
spatial resolution. The seismic source is also set at
a 5 m distance from the first receiver. The model
is defined as a horizontal two-layer structure with
a velocity of 250-350 m/s and a thickness of
8.5-7.5 m for the first layer and a velocity of
700-800 m/s for the second semi-infinite lower
layer. 70% of the generated synthetic data (70
images) is considered for training and the remained
20% for test. Both simple network and CNN
models are trained for the two noise-free and
5%-noise (on amplitude) cases with three- and
one-variable outputs as shown in Figures (5) and (6).
As can be seen, for both cases, overfitting is
observed when noises are present.

Now, to examine and compare different methods
and cases, the sample shown in Figure (7) is
examined. The velocity of the first layer is 300 m/s
with a thickness of 8 m and the velocity of the
second layer is 750 m/s in half space. The re-
sulting noise-free and noisy traces are shown in
Figures (8a) and (8b), respectively.
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Figure 6. Convergence diagram for neural network with
univariate output h.

Figure 7. Horizontal two-layer underground model with the
locations of source and receivers.

Three-component and single-component output
results for the Simple Fully-Connected Neural
Network (FCNN) and the CNN (with 50 training
data and 12 test data) for both noise-free and 5%
random noise cases are given in Tables (1) and (2),
respectively. The results are compared with those
obtained from the classical refraction method.
According to the Tables (1) and (2), the lowest error
is related to the fully connected neural network
for the noise-free case, followed closely by the
classical method, and the highest error pertains to
the noise-free classical inversion. By comparing
these two tables, it can be said that better results

Figure 8. Synthetic traces for the horizontal two-layer model
(The first 21 traces are used as input).
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are obtained for single-component output neural
network. An important point is the low resolution
0.1 of the training data, which, by using NN tech-
nology has given appropriate results. Classical
refraction methods, however, require resolutions
around 0.001-0.00001 for acceptable results.

Table 1. Results for the two types of neural networks and the classical inversion method for the three-variable output mode.

Table 2. Results the two types of neural networks and the classical inversion method for the single-variable output mode.

Table 3. Results for the two types of neural networks and the classical inversion method for the three-variable output mode.

Table 4. Results for the two types of neural networks and the classical inversion method for the univariate output mode.

To further investigate the effect of sampling
rate on the accuracy of artificial neural networks,
these calculations were applied to the same
designed neural networks with a sampling rate of
0.001. The results are reported in Tables (3) and (4)
for three- and single-component outputs, respecti-



JSEE / Vol. 22, No. 4, 202038

Reza Khajavi, Gholam Javan-Doloei, and Naimeh Khorshidi

vely. It should be pointed out that with the increase
in the number of points for this case, the time for
data generation and network training is doubled
compared with the previous case.

The results show an increase in the accuracy
of CNN outputs for both noise-free and noisy
cases for the three-variable output case. For CNN
single-component noisy case, the predictions are
greatly modified. While the neural network is
trained with velocity values of 250-350 m/s for the
first layer, the prediction for a noise-free case with
a velocity of the first layer equal to 500 m/s is
489 m/s, which implies good accuracy for the
network. The overfitting error for the network is
also removed.

To investigate the simultaneous effect of noise
and sampling rate on the output accuracy of artificial
neural networks, the three-variable CNN is trained
by 50 noise-free data with sampling rates of 0.001
and 0.0001.

Again, the inputs are fed to the CNN trained
with noise-free data and the sampling rate 0.001.
For this case, the outputs are reported in Table (5).
It is observed that even for high levels of noise,
accuracy for velocity values are acceptable. For
CNN trained with 50 noise-free data and a sampling
rate of 0.0001, the outputs for different levels of
noise are reported in Table (6). Compared with
trained NN with data sampled at 0.001, higher
accuracy is obtained. The accuracy of naïve fully-
connected NNs with generated data sampled at
0.001 deteriorates, due to their higher error values
during training data.

5. Conclusions

In this research, we achieved an accuracy
equal to classical inversion in a very short time
during data processing based on artificial intelli-
gence. Other results obtained in this research
were the leaving aside the eye errors, peaking the
first arrival of the wave, good accuracy in high
sampling rate data processing using the con-
volutional neural network and very good accuracy
for low resolution data using fully connected
networks. Therefore, convolutional neural net-
works are more efficient in processing data with
high sampling rate, especially contaminated with
noise. Therefore generally, in order to overcome the
upcoming challenges in collecting seismic data with
high sampling rate with the aim of identifying
geological structures with small dimensions, it is
inevitable to use fully connected neural networks
and convolutional neural networks. Reduction of
calculation time and accuracy of results are among
the advantages of these two neural networks in
seismic studies. However, the use of artificial
intelligence tools in inversion and subsurface
findings is facing challenges that require more
analysis and research. It is obvious that generating
synthetic data based on simulation with finite
difference and/or finite element methods requires
time, cost and high processing volume. The use of
alternative methods such as approximate modeling
methods or the reusing of artificial intelligence in
solving direct problems are solutions that require
further investigation in the future.
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