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1. Introduction

Post-earthquake assessment of buildings is one of the fundamental questions
that needs to be answered immediately after a strong seismic event. Taking a
building out of service after an earthquake can have a financial impact even
greater than the earthquake itself. Up to now, damaged buildings are categorized in
three groups, with red, yellow; or green labels, by engineering judgment based on
visual screening. 10 have a more accurate method, the response of the buildings in
aftershocks can be focused on new vibration-based system identification methods.
But determining the system parameters is still a challenging subject; involving
parameters with low identifiability, or correlated parameters can potentially
influence the results in model updating problems. In this paper, a sensitivity
matrix-based method is introduced to prioritize parameter estimability. The
matrix-based process is capable of quickly determining the correlation between
different parameters. Moreover, this method provides an explicit criterion for
determining the optimal number of identifiable parameters. To indicate the
efficiency ofthe method, a nonlinear Single-Degree of Freedom (SDOF) system has
been simulated. Multiple model updating procedures have been carried out on the
selected system, using the Unscented Kalman Filter (UKF). The result shows that
system identification based on the sensitivity analysis outcome improves the
quality of the identification precision. Additionally, this method decreases
identification time by 35 percent that this amount can be crucial for updating
large-scaled models.

Finding the residual capacity of damaged
structures after a strong earthquake is a significant
challenge in earthquake engineering. For this goal, it
is necessary to have enough information about
damaged buildings and seismic hazards in an earth-
quake-affected area. Visual inspection is currently
used to assess structures following a seismic event.
Visual inspection provides valuable information
about a damaged building; however, it has significant

drawbacks such as being subjective, time-con-
suming, requiring multi-stage inspections and
experts, etc. [1]. The Applied Technology Council
published an instruction, ATC-20 [2], for post-
carthquake safety assessment of buildings at the
end of the 1980s, and the new versions of ATC-20
have been released based on the lessons learned
from late earthquakes [3-5]. Since the focus of
these publications is on what buildings experienced
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during an earthquake, they do not provide owners
with explicit criteria for decision-making regarding
the future of buildings. In other words, visual
inspection only describes what structures have gone
through during a seismic event.

Researchers have gradually taken new steps
to respond to this demand, with a lot of progress
being made in data collection and system iden-
tification. Data extracted from a structure before,
during, and after a seismic event can be quite
useful. Post-earthquake safety assessment will be
achievable by comparing this multi-stage infor-
mation, which constitutes the separate analysis of
each stage, and combining the results with analytical
and numerical models. Studies that have been
done in this field can be categorized as data-driven,
model-driven, and fusion methods. In data-driven
methods, safety is evaluated by comparing
information gathered from measurements and
limited inspection, and by making use of a database
of similar buildings that have sustained varying
degrees of damage [6]. Another subset of research
focuses on model updating via field measure-
ments. This method's outputs are analytical
models that can simulate the behavior of buildings
under future possible loading scenarios [7-9]. The
last category is fusion methods, which determine
the amount of damage and employ an updated
model and a database. For instance, an updated
analytical model estimates the maximum drift
experienced during an earthquake; then, according
to the database, the decision-making process is
carried out [10-11]. As a result, system identification
occupies a central position in post-earthquake
building safety assessment.

The Kalman filter is a well-established iden-
tification method that was originally proposed first
for linear systems [12]. The Unscented Kalman
Filter (UKF) and the Extended Kalman Filter (EKF)
are two well-known nonlinear extensions of the
Kalman filter [13-14]. In the Kalman filter, the
observability matrix was a basis upon which
parameter estimability was determined. According
to the definition, a system is observable if the initial
state can be uniquely identified from measure-
ments made at each time step. Calculating the
observability matrix for a nonlinear system is
computationally taxing and quite complex [15].
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Parameter estimation is highly dependent on the
quality of measurements, i.e. all parameters of a
system are not necessarily identifiable by a given
measurement. The sensitivity of the vibration
measurements to parameter changes can be
considered as parameter identifiability [16].
Accordingly, a sensitivity analysis prior to model
updating can provide valuable insight. In Structural
Engineering, sensitivity analysis is a common way
to study the impact of input parameters (e.g.,
boundary conditions, model parameters, initial
conditions, etc.) on the response of the structure
[17-22]. Ramanacha et al. [21] showed "iden-
tifiability analysis" before updating the model,
results in reducing the computational costs and
better results.

This study attempts to implement a matrix-based
sensitivity analysis right before solving a structural
model updating problem. The objectives of this
paper are defined as:

- Investigating the effect of wrong model
parameter selection in an identification problem;

- To study the relation between estimability and
the parameter sensitivity rank;

- Determining the optimum number of model
parameters in a model updating problem.

2. Methods
2.1. Problem Statement

The Kalman filter identifies the parameters of
a system in a stochastic space using the system's
fundamental equation, which is usually a differential
equation, and noise-polluted measured responses.
The quality of model updating depends on the
quality and adequacy of the measurements. A
given parameter of a system is identifiable when
the measured system response is sensitive to
changes in that parameter and is uncorrelated to
other unknown parameters of the system. Recog-
nizing these issues in a small linear model is quite
easy. In a complex nonlinear system with numerous
unknown parameters; however, the problem takes
on a whole new character.

In this study, the estimability of the parameters of
a nonlinear SDOF system is calculated using the
sensitivity matrix-based method [23], and the
results have been validated using the Forward
Finite Difference (FFD) method. The matrix-based
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method, beside determining the correlation
between system parameters, provides a specific
criterion for determining the optimal number of
parameters involved in the identification process.
UKF is used in this paper because of its intrinsic
advantage over EKF [24] for a nonlinear SDOF
model updating in four different cases in terms of
parameters selection scenarios. The nonlinear
SDOF model has six main parameters (two of
which are correlated) that depict the behavior of
the system under a given seismic record. In the first
scenario, all of them are assumed as unknowns. In
the remaining three scenarios, parameters deemed
to have lower identifiability according to the
estimability analysis were set aside from the
identification process, and the quality of the model
updating operation was also studied.

2.2. The Unscented Kalman Filter

For a discrete-time system in the recursive
form, the equations of a dynamic system and its
measurement that have, respectively, an additive
process and measurement noise are:

X = (X)) +wy (D

z, =hy (Xk)+vk )

where k is the time step; x, € R" is the state
vector; w, € R" is the process noise vector;
z, € R" is the measurement vector, and v, € R"
is the measurement noise vector.

The Kalman filter (KF) is created from the
time updating step (prediction) and measurement
updating step (updating). KF is based on the
assumption that all noise vectors are uncorrelated
with Gaussian distribution having means equal to
zero. Originally, the Kalman filter was introduced
to estimate the state of a linear system [12].
Following that, the EKF (Extended Kalman Filter)
was proposed to solve nonlinear problems. The
filter is suitable for a wide range of nonlinear
systems; however, it has a few drawbacks, including
convergence issues, high computational cost, and
impaired performance for systems with high levels
of nonlinearity [24]. Because UKF is based on
statistical linearization, unlike EKF, it does not
require local linearization. The basic idea behind
UKF is to propagate means and covariances by
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passing some carefully-selected points (sigma
points) through a nonlinear system, rather than
the entire statistical function. The means and co-
variances are then computed using transformed
sigma points. The unscented transform is the core of
UKF.

Consider a random variable, x, with n dimen-
sions. The mean x, and covariance P, , of x are
supposed to propagate through an arbitrary non-
linear function £,

X, =E[x] (3)
Py =E[(x = %)(x = %) | 4)

The sigma point matrix ¥ with 2n + 1 columns
and its related weights are calculated by the
following equations:

Xo :’Eo )

T
Ji=1,...n (6)

Yo =% ~ (@ )P )T i=1,...n )

A
wm —

) ®
W =W +(1-a? +P) )
wm—w©o =1 iy g 10

W = ey T (10)

where (\/(n+2X)P); represents the i row (or

column) of a cubic matrix calculated by Cholesky
decomposition. A is a scale factor (o (n +k)—n);
o determines the sigma point dispersion around
the mean within the range of one and zero. Another
scale is k, which is usually considered as zero. [3
considers pre-knowledge of the distribution of x in
the problem (for Gaussian distribution, 2 is the
optimum value). W™ and W© are the mean
and covariance weights of the ith point, respectively.
Transformed sigma points were obtained after
passing sigma points through the nonlinear function.
As a result, prior-estimation means vector x, and
prior-estimation covariance P, were calculated
as follows:
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(11)

i=0 T (12)

where Q, denotes the process noise covariance
matrix and represents the uncertainty in the system
states. The mean and covariance of measurement
are as follows:

2n

= W (h () (13)
i=0

P, = 22 W [h () - 25 |x
iz (14)

(hGi) ~2i ] +Re

where h(y,); is the transformed sigma point in
the measurement space; X is the sigma point matrix;
z is the mean of measurement; P, is the measure-
ment covariance matrix; R, is the measurement
noise, and h is the measurement function that
maps the sigma points to the measurement space.
The cross-correlation between the sigma points in
the state and measurement space has been used
to calculate the UKF prediction error. For this, the
cross-correlation matrix and Kaman gain are as
follows:

P, = fw,-(” | (G0r)~ 5i )
i=0

= (15)

[h Ot )i — Zk:|
K=P_P (16)
Finally, the posterior mean value X, and the

covariance matrix P, are computed, and the
prediction step is finished.

X =X + K (2, —2) (17)
P, =P, -K,P, K/ (18)

in which z, is the real measurement. Although
the noise covariance matrix in the original for-
mulation of UKF is assumed to be fixed, in this
study, the Robbins-Monro method has been used to
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update the covariance matrix. For more information,
the reader please refer to the reference [24].

2.3. Forward Finite Ditference Method (FFD)

The forward Finite Difference method (FFD) is a
standard method used for sensitivity analysis.
Despite its defects, the method is regularly used for
its simplicity. In this method, the changes in outputs
are investigated by introducing a perturbation and
applying it to a given parameter. According to [21],
the amount of perturbation could affect the results.
The accuracy of results improves as this value is
reduced, but further decreases deteriorates the
results, which is due to the rounding of the error.
This is known as the "perturbation size dilemma"
in the literature.

2.4. Sensitivity Matrix-Based Analysis for Priori-
tizing Parameters Estimability

Yao et al. [23] proposed a sensitivity-based/
orthogonal-based method for parameter estimability
analysis. Sensitivity analysis is a method for investi-
gating changes in outputs caused by changes in the
value of a given system parameter. The matrix
elements in the sensitivity matrix-based method
are equal to the ratio of output changes to the changes
of each system parameter in a given time step. This
method can investigate two topics: the first is
determining the parameters that cause the most
sensitivity in the output, and the second is deter-
mining whether there is any correlation between the
selected subset of parameters. The steps of the
methods are as follows:

1. Calculating the sensitivity matrix elements, Z by
Equation (19)

2. Choosing, as the first identifiable parameter, the
parameter whose column's elements has the
greatest sum of squares value;

3. Marking the preceding column as X,, where
Lell,...,n,};

4. Z, =X, (XTX,)'X,Z is used to calculate
matrix z, ;

5. Calculating the residual matrix R; where
R, =Z-7Z,;

6. Selecting, as the next identifiable parameter, the
parameter whose column's elements has the
greatest value of the summation of squares of
R

L>
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7. In step 6, augment X, with the corresponding
column of Z of the selected parameter. The
augmented matrix is denoted as X, . ;

8. Repeating steps 4 to 7 until L=n,.

The sensitivity matrix is defined as:

7%
20,
t=t,

oy, %

9, t=t, 9 t=t,

0y r ~Oyp

o ., 00l | | 2 e

0 0

L . ﬂ Z],RXN oo ZP,RXN (19)
9, t=t, Op t=t,

Yr .. Yk

0, t=ty %y t=ty

where y, is the Rth output of the system, y, is the
Pth parameter, and ¢, is the Nth time step. Central
finite difference is used to calculate each element of
the sensitivity matrix.

z; ;(te) =
vi(6;+20,.t,) -y, (6, -A0,.1,)

246,

<0, (0

the parameter AQ;, is the size of the perturbation
that can affect the results. Baker et al. [25] proposed
the value of A, to be equal to the square root of
the error covariance matrix of ;. In the present
study, a small ratio (0.001) of 0 is assumed for A ;.

3. Modeling and Analysis
3.1. Case Study: A Nonlinear SDOF System

The goal of this section is to prioritize estimability
of the parameter. For this purpose, a nonlinear
SDOF system is studied in four different cases.
Figure (1) depicts the model of the SDOF system.
The Bouc-Wen hysteresis model [26] is used for
nonlinear behavior of this system, which is a
mass-spring-damper.

The differential equation of motion for the above
system is defined as follows:

mx +cX + kr =—mx, (21)
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Figure 1. SDOF Model with nonlinearity.

F(6)=x—BJH| | r —yGO|r|" (22)

where r(t) is the hysteretic displacement vector;
and v, B, and n represent the Bouc-Wen hysteresis
parameters [26]. By merging the above equations
and transforming them to classical state-space,
the following equation is achieved:

Z X
Z, X
zy| | L
Zy| |k
?5 :C. =
Zg m
Z7| |B
Zg | |
%o |1 ]
Z,
Zs
——2XZ, ==t X2z,
Zg 6
x|z,| x “ Z, X Z, |24 "
Zy = Zg X|Zy| X Z3|Z3 7 XZy\|Z3
+
0
0 24
0 (24)
0
0
0
- X,

SOODODOOoOOO S [e)

These equations can be rewritten as follow:
Z=f(2)~X, +w (25)
y=h(z)+v (26)
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where fand h are the functions of the state
variables; z is the state vector; y is the observation
vector; X, is the earthquake acceleration; wis the
process noise; v is the measurement noise. The
vector of state and parameters has the following
form:

z:[xi(rkcmﬁyn]T (27)
where k is the stiffness of the system; c is the
damping; B, y, and n are the parameters defining
the system's nonlinear behavior (i.e., 6=
[k cmBy n]T ). The vector of true values of par-
ameters is assumed as 6, =[120.5121 Z]T. The
process error covariance matrix for augmented
state and parameters vector is diag[(107*)*]e R*,
and the measurement error covariance is
equal to 5x107. The considered SDOF system is
analyzed under the El-Centro earthquake with a
frequency rate of 50 Hz. Euler's method with a
time step of 10* is used to solve the equation
of motion. Following the simulation of the system
with the actual values, the system's output
(mass displace-ment) is recoded and polluted by
white noise with the mentioned statistical prop-
erties. P,, and X, are diag[0.25(X,)’] € R™ and
[0000.6x1203x0.50.8x1 1.4x2 0.6x10.8x2],

respectively.

Case 1: System with six unknown parameters. It
is assumed that all system parameters are unknown
in the first step, and UKF is applied to estimate the
value of each of the six parameters. UKF is pre-
sented in section y2.2, and all of its requirements are
mentioned there. Estimated values are not constant
and will change in each iteration due to the random
nature of the imposed measurement noise. Figure (2)
to Figure (4) show the results of the identification
process. The estimation time histories of three state
parameters (i.e., displacement, velocity, and restor-
ing force) are depicted in Figure (2). Regarding the
results, the filter can precisely estimate state vari-
ables in each time step. Figure (3) represents the
estimation time histories of the system parameters,
whereas the filter is unsuccessful in converging to
the true values. In Figure (4), the restoring force cal-
culated based on the last estimated values of param-
eters is plotted versus the estimated displacement.
The estimated hysteresis loop is not similar enough
to the true. It shows that the variables are not chosen
properly for system identification.

Parameter estimability analysis for the nonlinear
SDOF system is performed using a code developed
in MATLAB. For this purpose, the sensitivity matrix

% 5 f f ——Measurement
§ --=-True
- - UKF
g o
o
o
0
8 ]
j_ 0 5 10 15 20 25 30 35
Time (sec)
w -==-True
£ —— UKF
2
£ _
K]
o
> .
> 35
Time (sec)
05 2 ‘ ——-True
— UKF
€ o -
0.5 \ | tes | | | S | il
0 5 10 15 20 25 30 35
Time (sec)

Figure 2. States estimation of the nonlinear SDOF: mass displacement response; mass velocity response; and the restoring force

(ordered from top to bottom).
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Figure 3. The system parameter estimation time-histories..
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Figure 4. Comparing estimated and true hysteresis loops.

is calculated according to Equation (19); the column
corresponding to the mass has the greatest sum of
squares; therefore, it is the most estimable param-
cter. By following steps (3) to (8) other system
parameters are prioritized. The result is shown
in Table (1). Parameter estimability was also
calculated via FFD to validate the sensitivity
matrix-based method results.

Table 1. Parameter estimability ranked by sensitivity matrix-based
analysis of the nonlinear SDOF.

Parameter m n [ B
Priority 1 2 3 4 5 6

JSEE / Wl. 23, No. 3, 2021

The sensitivity based-matrix can determine the
linear relation between the given parameters. The
mass, m, of the SDOF has the highest rank, while
stiffness, k, has the lowest (Table 1). Following the
results of each iteration of the sensitivity matrix-
based analysis (step 4 to 7), it was discovered
that the stiffness and mass of the system are two
correlated parameters (Table 2). As shown in
Figure (3) and Figure (4), the presence of both of
these parameters in the identification process
results in a significant error. In other words, when
there are some correlated parameters in an
identification problem, the filter cannot converge
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Table 2. Parameter estimability ranked by sensitivity matrix-based analysis of the nonlinear SDOF.

Parameter

k

C

m

B

Y

n

1% Iteration

8.787E+03

2.109E+03

1.868E+04

1.393E+03

1.418E+02

2.454E+03

2" Jteration

1.812E+02

1.812E+02

1.496E-27

4.028E+02

1.592E+00

1.078E+03

31 Jteration

9.910E+01

9.911E+01

3.411E-27

1.395E+01

1.093E+00

3.614E-28

4t Tteration

7.280E-07

1.780E-26

2.355E-25

7.491E+00

4.382E-01

1.552E-26

5th Tteration

7.243E-07

5.881E-25

5.366E-24

4.892E-25

7.358E-02

8.917E-25

6t Tteration

5.585E-07

4.836E-23

4.967E-22

3.551E-23

3.861E-24

5.552E-23

to the true values of parameters. The results of
FFD are presented in Figure (5).

The FFD ranking, as shown in Figure (5), is
identical to the sensitivity matrix-based method;
however, the position of the stiffness parameter is
different, and stiffness has the second rank. The
linear relationship between mass and stiffness is
not recognizable, as expected in the FFD method.

In the following, instead of noise randomness,
identification outputs are obtained by averaging
over a 100-Monte-Carlo simulation. As shown in
Figure (6), the mean of identification results is not
satisfying.

Case 2: System with five unknown param-
eters. As pointed above, mass and stiffness are
two correlated parameters. Since the mass par-
ameter has the lowest inherent uncertainty
among other parameters correlated to stiffness,
an accurate estimation of that can be reached
through engineering knowledge and is therefore
excluded from the identification process.

Therefore, in Case 2, the mass of the system is
assumed as its true value; the other conditions
and processes are the same as case 1. As shown in
Figure (7), parameter identification is more satis-
factory than it was in case no. 1 (Figure 6).
Almost three of the top-ranked parameters can be
found by the UKF, but two of them cannot be
identified yet.

Two other cases are studied as follows. In
these cases, the influence of elimination or parti-
cipation of parameters with low estimability on the
quality of the identification procedure is evaluated.
In every case, by eliminating each parameter, the
designated value is identical to the initial guess in
case 1.

Case 3: System with four unknown parameters.
Here, the parameter with the lowest estimability
rank, i.e., v, is taken out of the identification process.
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Figure 5. Relative importance of nonlinear system parameters
(based on FFD).
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Figure 6. Mean of the identification results of 100 Monte-Carlo
simulations for case 1.

In terms of the preceding point, its value is equal
to 60 percent of the actual value. The results
show that removing this parameter from the
identification process has no effect on the quality
of the estimation of other parameters (Figure 8).
Case 4: System with three unknown param-
eters. In this step, it is assumed that the parameter,
[, in addition to y, are taken out of the identification
process. However, incorrect values of these

JSEE / Wl. 23, No. 3, 2021
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Figure 7. Mean of the identification results of 100 Monte-Carlo
simulations for case.

parameters have been given to the filter. It should
be noted that removing both of these parameters
from the identification has no discernible effect on
the outcome (Figure 9). Therefore, it can be con-
cluded that, in an identification problem, parameters
with low estimability cannot affect the results.
Table (3) shows the mean of the identified
parameters for the four cases. There is a significant
jump in the estimation precision from Cases 1 to
Case 2; bringing the mass out of the estimation
process, raised the accuracy. Based on the results
of other cases, dropping two parameters with the
lowest rank in the identifiability analyses (3 and ),
has almost no effect on the results. Table (4)
summarizes the standard deviation (STD) of the
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Figure 9. Mean of the identification results of 100 Monte-Carlo simulations for case no. 4.

identified parameters; the STDs are decreased as
the number of system parameters is reduced.
This shows that the estimation is more reliable
when the number of estimating parameters is
limited to the estimable parameters. The Schmidt-
Kalman filter [27] is proposed to compensate for
the reduced uncertainties caused by excluding
parameters with low estimability. This, however, is
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beyond the scope of this paper. Figure (10) depicts
the variations of the estimation error for the three
most identifiable parameters in all cases. In addition
to the El-Centro earthquake, system identification
has been done using four other earthquake records.
As shown in Figure (10), the results of other ground
motions follow the same pattern. As a result,
dropping parameters with low estimability does
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not interfere with the identification process.

This section's results can also be used to establish
a threshold of identifiable parameters. The point
will be a sensitivity matrix cutoff value that halts

the prioritizing algorithm. The aim of this article
is not to put forth an amount for this threshold.
Furthermore, as presented in Table (5), the
identification time of 15% is decreased just by

Table 3. Mean of the identified value for the system parameters in case 1-4.

Case 1 Case 2 Case 3 Case 4
Parameter True Value
Mean of Final Estimation
K 12 8.35 11.877 11.88 11.81
C 0.3 0.21 0.277 0.276 0.285
M 1 0.7 N/C N/C N/C
B 2 2.21 2.276 2.31 N/C
Yy 1 0.78 0.642 N/C N/C
n 2 2.08 2.067 2.07 2.15

*N/C; Not Calculated.

Table 4. Standard deviation of the identified value for the system parameters in cases 1-4.

Case 1 Case 2 Case 3 Case 4
Parameter True Value - —
STD of Final Estimation
K 12 10.19 3.488 3.17 3.05
C 0.3 0.262 0.273 0.27 0.26
M 1 0.86 N/C N/C N/C
B 2 2.79 3.876 3.81 N/C
Y 1 1.38 1.444 N/C N/C
n 2 1.69 2.189 2.17 0.9
*N/C; Not Calculated.
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Figure 10. Variation of estimation error for three most estimable parameters in all cases (the results obtained by 100 Monte-Carlo

simulations).
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Table 5. The identification time spent for four cases.

Case 1 2 3 4
259.6 219.096 203.76 167.14

Time Spent (sec.)

excluding the mass parameter from the identification
process. In the same way, reducing the number of
identifiable parameters decreases the identification
time in the third and fourth cases by 21% and 34%,
respectively.

4. Conclusion

Structural safety assessment is the main issue
after a strong earthquake. Model updating by field
measurements is one of the promising methods for
post-carthquake assessment in the aftermath of a
seismic event. Identifying the number of parameters
based on measurements is an important part of
model updating that can reduce calculation costs
and errors. This paper describes a method for
prioritizing the parameters of structural systems
that can detect linear correlations between the
parameters. The method was applied to a nonlinear
SDOF. The SDOF system was studied in four
different scenarios. In the first one, the filter could
not converge to the truth when all system par-
ameters involved in the identification problem.
However, the matrix-based sensitivity method
illustrated the linear relation between mass and
stiffness parameters. Hence, in the second
scenario, according to engineering wisdom, the
mass parameter is assumed to be known. Finally,
in the two last scenarios, omitting the parameters
with low estimability was studied. The following
conclusions have been achieved:

Estimability and sensitivity are inter-related
concepts. In other words, parameters with greater
sensitivity are more easily identified.

Selected parameters that are to be updated by
measurements must be uncorrelated. Matrix-based
sensitivity analysis clearly reveals the correlation
between system parameters in a straightforward
manner; however, this is an ambiguous process in
traditional methods, such as FFD.

In the identification process, involving parameters
with an estimability magnitude less than a given
bound exerts no discernible influence on the iden-
tification results. Although leaving such parameters
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out of the analysis reduces identification time
without sacrificing identified mean precision, it also
reduces the final identified variances. As stated, the
uncertainty of identified parameters is incorrectly
reduced by a small amount, which could be taken
into account by methods such as SUKF. In
summary and based on the results, in identi-
fication problems by Kalman Filter method, it is
proposed to focus just on some most estimable
parameters and forget about others. It is planned
to have an experimental test in the future, to verify
the method, where the lack of knowledge about
the measurement noise and model uncertainties
are real and probably effective.
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