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The main scope of this paper is to study an application of evolutionary algorithms,
i.e. genetic algorithm and genetic programming (GP), for obtaining Peak Ground
Acceleration (PGA) prediction model in the case of Iranian database. The proposed
GP model is compared with a set of existing attenuation relationships via several
traditional and modern mathematical and statistical methods. A new re-sampling
approach is also introduced to assess the stability of the chosen models. The
obtained model shows clearly more consistency with the local data in comparison
with the other selected models.
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1. Introduction

Prediction of ground motion intensity measures
is one of the most important parts of Seismic
Hazard Analysis (SHA). Generally, SHA, can be
performed either probabilistically (PSHA) or deter-
ministically (DSHA) [1], in both of which Ground
Motion Prediction Equations (GMPEs) are inherent
parts.

Researchers have been developed two basic
different methodologies, i.e. empirical and physical
relationships, for attaining prediction equation
models according to site geology and distribution of
events. Empirical models, which are based on math-
ematical methods, describe the observations by means
of regression analysis on a specific site with
abundant data set. On the other hand, physical mod-
els, which describe seismic wave's generation and
propagation, are used in a specific site with lack of
observations. Recently, beside two mentioned
approaches, methods of information processing
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known as soft computing techniques, such as
Evolutionary Algorithms (EA), have been used in
order to obtain attenuation relationships as a modern
approach [2-5]. Evolutionary algorithms, specifically
genetic programming (GP) and genetic algorithm
(GA), are optimization techniques based on the
rules of natural selection [6-7]. Although, using GP
and GA methods does not reduce the uncertainties;
however, there is more complicated interaction
among the observation and prediction values [3].

The main aim of this study is to derive a new
Peak-Ground-Acceleration (PGA) attenuation model
via GP and GA methods based on an Iranian
database. The incorporation of information-theoretic
method [8] and re-sampling analysis has been
proposed here in order to improve the fitness
functions of GP and GA. Afterwards, the new PGA
attenuation model is compared with a set of available
prediction models.
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2. Genetic Algorithm and Genetic Programming

Genetic algorithm, as the most popular member
of evolutionary algorithms, is the best known
intellectual optimization technique based on the
principles of natural selection and survival of the
fittest [7, 9, 10], initially developed by John Holland
at the University of Michigan in 1975.

Genetic programming, as a particular form of
genetic algorithm, was introduced by John Koza in
1992. In this subset of evolutionary algorithm, the
absolute solution, without any explicit programming,
is obtained by using the concepts of genetic
algorithm and the parse trees (tree structures). The
development of the initial population in GP, consisting
of functions and terminals, is accomplished by
means of biological selection and reproduction [6].

The following three main steps are key elements
within any Genetic programming procedure [6]:
1. Generate an initial population of random compo-

sitions of functions and terminals.
2. Repeat (below) steps 2.1 and 2.2 until the estab-

lishment of the program's suitable and final
condition:
2.1. Executes each program and assigns a fitness

value to it according to the fitness function.
2.2. Create a new population of computer pro-

grams by means of the genetic operators
(reproduction, mutation, and cross-over).

l Reproduction: Copy the best existing programs in
the new population.

l Mutation: Select an existing program, change a
node of the individual randomly and move the
program to the new population.

l Cross-over: Select two programs and change one
branch with another randomly and move the two
produced programs to the new population.

3. Select the best computer program that has been
appeared in any generation.

3. Ground Motion Database

Iran is located in the middle part of the Alpine-
Himalayan seismotectonic belt and is known as one
of the most seismicity active regions in the world.
Several comprehensive studies on geological
characteristics and the seismicity nature of this
region have been carried out [11-13]. Researchers
usually classify Iranian plateau into two major seis-
mic zones i.e. the Central Iran and the Zagros [14].

Most of the seismic activities are concentrated in the
Zagros region, and less seismic activity is observed
in the central Iran and other regions [12].

The data set used in this study, as seen in Table
(1), consists of 179 strong ground motion records
of 36 earthquake events with moment magnitude
(Mw) ranging from 5.0 to 7.4 and distance ranging
less than 200 km occurred between 1978 and 2008.
The total 179 records have been extracted from the
Iran Strong Motion Network (according to the

Table 1. Ground motion database for Iranian plateau (date is
listed as YYYY/MM/DD).

*FD: FD is focal depth (km)
**N: Number of records for each earthquake.
***Zone: 1 and 2 refer to the Central Iran Zone and Zagros Zone,

          respectively.

No Date Mw *FD **N ***Zone 
1 1978/09/16 7.4 10 4 1 
2 1979/11/27 7.1 10 7 1 
3 1990/06/20 7.3 12 2 1 
4 1994/06/20 5.8 9 7 2 
5 1997/02/04 6.5 8 1 1 
6 1997/02/28 6 9 3 1 
7 1997/05/10 7.2 13 7 1 
8 1998/03/14 6.6 5 2 1 
9 1999/08/21 5 25 3 2 
10 1999/05/06 6.2 7 5 2 
11 1999/05/06 5.7 10 3 2 
12 1999/10/31 5.2 15 4 2 
13 2002/04/24 5.4 25 6 2 
14 2002/06/22 6.4 10 12 1 
15 2002/12/24 5.2 20 6 2 
16 2003/07/10 5.8 10 4 2 
17 2003/07/10 5.7 15 4 2 
18 2003/08/21 5.9 20 3 1 
19 2003/11/28 5 25 3 2 
20 2003/12/26 6.5 3 6 1 
21 2004/05/28 6.3 27 5 1 
22 2004/10/07 5.6 30 9 1 
23 2005/01/10 5.3 32 8 1 
24 2005/02/22 6.3 10 6 1 
25 2005/11/27 5.9 12 6 2 
26 2006/03/30 5.1 20 8 2 
27 2006/03/31 6.1 12 9 2 
28 2006/03/31 5.1 26 6 2 
29 2006/06/28 5.8 12 4 2 
30 2008/05/05 5.2 12 3 2 
31 2008/09/10 6.1 12 5 2 
32 2008/09/11 5.2 7 3 2 
33 2008/09/17 5.2 12 3 2 
34 2008/12/07 5.4 12 4 2 
35 2008/12/08 5.1 12 4 2 
36 2008/12/09 5 14 3 2 
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Building and Housing Research Center, BHRC
website, last accessed December 2012). Most of
the Iranian earthquake events are reverse-thrust,
strike-slip, or a combination of these two mecha-
nisms [15].

Figure (1), exhibits the distribution of magnitude
versus distance, with displaying different site types.
The site classification in this study is the same as the
one defined in the Iranian code of standard seismic
resistant design of buildings, Standard No. 2800 [16],
which includes four classes. Site categories I and II
(VS30 

≥ 375 m/s) were combined together and con-
sidered as the rock site, and categories III and IV
(VS30 < 375 m/s) were combined together and named
the soil site.

Figure 1. Distribution in terms of magnitude, distance and
site classification of study accelerograms recorded
by the BHRC in Iran.

4. A New PGA Prediction Model

GPLAB, which is used in this paper, is a genetic
programming which is written by Sara Silva in 2007
[17]. This toolbox is an operational and practical
application for different types of users. Recently,
some researchers have used this toolbox for obtain-
ing predictive equations [2, 18].

For using GPLAB, the database is divided into
the training set (80% of the data set) and the testing
set (20% of the data set), chosen randomly (uniformly
distributed).

The programs in GPLAB (tree structures), are
initialized with one of the three accessible initializing
methods "Full, Grow, and Ramped Half-and-Half"
[6]. In this study, initial population is produced
based on Ramped Half-and-Half method. In the
standard procedure, an equal number of individuals
is initialized for each depth between two and the

initial tree depth value [17]. The population of trees
resulting from this initialization method is very
diverse, with balanced and unbalanced trees of
bseveral different depths [17].

One of the important features of GPLAB is some
appropriate restrictions on tree's depth or size to avoid
bloat that is a phenomenon consisting of an exces-
sive code growth without any corresponding improve-
ment in the fitness [6, 17].
In GPLAB, parents are selected for reproduction
according to four usual sampling methods [6, 17]. In
this paper, Lexictour sampling approach was used
for selecting parents. In this approach, a random
number of individuals are chosen from the population
and the best of them is chosen [17]. Table (2)
indicates important parameters used for running
GPLAB in the current paper.

Table 2. The adoptive parameters for GPLAB.

The GP fitness function based on information-
theoretic method [8] is proposed in order to quantita-
tively assess the predictive models. In this study, by
using the average sample log likelihood definition,
the LLH criterion is defined as written in Eq. (1) and
GPLAB minimized it.

∑
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                                  (1)

The Expression Tree (ET) of LnPGA, obtained
from genetic programming (GPLAB), is shown
in Figure (2), where X1, X2, and X3 are moment
magnitude, distance measure, and shear wave
velocity, respectively.

After obtaining the initial predictive model, by GP,

Function Set 3 2, 1, =××÷−+ n         )(X Power n n        

 Terminals {Mw, R, VS30, Ramped-half-and-half} 

Initial Population Ramped nit (Ramped-half-and-half) 

Sampling Method Lexictour 
Operators Mutation, Cross-Over 
Elitism Total elitism 
Total Data 179 
Training Data 145 
Testing Data 34 

End Point Number of Generations 

Population Size 800 
Generation 150 
Fixed Level 2 (1 = depth, 2 = nodes) 
Real Max Level 40 
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Figure 2. ET for the proposed GP model (X1, X2, and X3 are moment magnitude, distance measure, and shear wave velocity,
respectively).

in order to reduce the bias toward different earth-
quake parameters and likewise for reducing the
sensitivity of the initial attenuation model to the
considered database, the GA fitness function is
defined according to Eq. (2) as a combination of
LLH criterion and re-sampling analysis.
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where dN  is the uniformly distributed random data-
bases (in this study, dN =100), n

iS  is the ith sample
with n records, n

iS  is the residual's p-value of n
iS

versus jth parameter, M is the earthquake moment
magnitude, R is the distance measure, VS30 is the
shear wave velocity, 1ω = 0.25 and 2ω = 0.125 are
the weighting constants based on authors judgment.

The final form of LnPGA is shown in Eq. (3)

and Table (3) shows the result of the coefficients
achieved by GA.
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Mw, R, and VS30 denote, respectively, the earth-
quake moment magnitude, earthquake distance mea-
sure and shear-wave velocity.

a1 1.00 a8 1.00 
a2 3.44 a9 1.00 
a3 0.72 a10 1.00 
a4 1.00 a11 0.056 
a5 0.11 a12 1.00 
a6 1.00 a13 1.00 
a7 2.33 σLnY 0.9276 

 

Table 3. The constant coefficients obtained by GA from final
optimized model.
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5. Selected Ground Motion Prediction Equations

According to different researches on seismotec-
tonic nature of Iranian Plateau, it has been demon-
strated that all of the earthquake events occurred in
this region are shallow and intra-plate events [19].
Furthermore, meaningful correlation between this
kind of events from different regions, including
Turkey and California is reported by researchers [20].
Based on these facts, the candidate ground motion
prediction equations are consisted of the following
three classes:
l The local GMPEs which have been developed

based on the Iranian datasets.
l The regional GMPEs corresponding to Europe

and Middle East datasets.
l The global GMPEs developed in the Next

Generation Attenuation (NGA) project.
In 2008, the NGA project, which was initiated by

the Pacific Earthquake Engineering Research
center (PEER) [21], has published five new models
through a comprehensive and highly interactive
research program, for shallow crustal earthquakes in
the Western North of America to predict Peak Ground
Acceleration (PGA), Peak Ground Velocity (PGV),
and 5% damped response spectra for periods rang-
ing between 0.01 to 10 seconds. These relationships
are Abrahamson and Silva [22], Boore and Atkinson
[23], Campbell and Bozorgnia [24], Chiou and Youngs
[25], and Idriss [26]. It should be noted that Idriss
[26] model only includes rock sites (assumed to be
sites with VS30 450 m/s), in which this significant
difference isolates the model from the other models
because it can only be applied to rock sites. There-
fore, this model is excluded in this paper for further
investigations. These models consist of different
parameters, e.g. terms of influence the nonlinear
site, sediment depth, hanging wall effects, source
parameters, and etc. The NGA database used to
develop the NGA GMPEs is relatively large i.e. 3551
recordings from 173 earthquakes (A few Iranian
events are also included in this database).

Some recent papers have presented a number of
suggestions as criteria that can be used to select
GMPEs [27]. Four significant points are particularly
considered in this study;
l The models superseded by a more recent publi-
cation are excluded.
l The models which lack either in non-linear

magnitude dependence or magnitude-dependent
decay with distance are avoided [27-28]. This
issue should be met just by empirical models, not
by physical model.

l The models which use inappropriate definitions
for explanatory variables, such as ML or Repi, or
models with the site effects without consideration
of VS30 are excluded.

l The coefficients of the model were not determined
by a method that accounts for inter-event and
intra-event components of variability. In other
words, models must be derived using one- or
two-stage maximum likelihood approaches or the
random effects approach.
Here, the selected ground motion models are

briefly described as follows:

5.1. Saffari et al. [15] (Setal12)

The model has been developed for predicting PGA,
PGV, and acceleration response spectra with 5%
damping based on a subset of Iran database (78 earth-
quakes and 351 records). This model includes
Moment magnitude, distance measure, fault mecha-
nism, site class, and zone as seismic parameters.

5.2. Zafarani et al. [29] (Zetal12)

Zetal12 is a physical GMPE relationship which
was developed by using the Specific Barrier Model
(SBM). An Iranian data set consists of 171 strong-
motion records from 24 earthquakes for Zagros
region was used to obtain this model.

5.3. Ghodrati et al. [30] (Getal07)

Getal07 has been developed for predicting PGA,
PGV, and Effective Peak Acceleration (EPA) for
Zagros, Alborz, and Central-Iran seismotectonic
regions. The data set includes 89 earthquakes and
307 records. In this model, surface wave magnitude
(Ms) as moment measure has been used.

According to the third criterion recommended by
Bommer et al.  [27], this model should be excluded,
nonetheless it is kept in this stage of the study to show
the inconsistency of this model in comparison with
the other models.

5.4. Akkar and Bommer [31] (AB10)

This model can be used for the prediction of PGA,
PGV, and response spectral ordinates in the Europe,
the Middle East and the Mediterranean. They used a
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subset of 532 strong-motion records from 131 events
in these regions.

5.5. Akkar and Cagnan [32] (AC10)

This model is proposed for predicting PGA, PGV,
and acceleration response spectra with 5% damping
for periods ranging from 0.03 to 2 seconds by means
of Turkish ground-motion database.

5.6. Ambraseys et al. [33] (Aetal05)

This model presents equations for the estimation
of PGA and pseudo-spectral acceleration caused by
shallow crustal earthquakes by means of a set of 595
strong-motion records recorded in Europe and the
Middle East.

5.7. Ozbey et al. [34] (Ozetal04)

The base is a subset of 195 records from 17 earth-
quakes used in the regression analyses. This model
predicts PGA and acceleration response spectra
with 5% damping for periods ranging from 0.1 to 4
seconds.

5.8. Kalkan and Gulkan [35] (KG04)

The corresponding authors used a dataset cre-
ated from a set of 112 strong ground motion records
from 57 earthquakes that occurred between 1976
and 2003 to develop horizontal GMPE relationships
for Turkey.

5.9. Bindi et al. [36] (Bindi10)

The data set was composed of 561 three-compo-
nent waveforms from 107 earthquake events occurred
in Italy between 1972 and 2007 and recorded by
206 stations at distances up to 100 km. This model
predicts PGA, PGV, and acceleration response
spectra with 5% damping for periods ranging from
0.3 to 2 seconds.

5.10. Campbell and Bozorgnia [24] (CB08)

CB08 has been obtained based on a subset of the
PEER NGA database (1661 records from 64 events)
for predicting PGA, PGV, and acceleration response
spectra with 5% damping according for periods
ranging between 0.01 to 10 seconds. The CB08
includes the effects of magnitude saturation, magni-
tude-dependent GMPE, style of faulting, rupture

depth, hanging-wall geometry, linear and nonlinear
site response, 3-D basin response, and inter-event
and intra-event variability.

5.11. Boore and Atkinson [23] (BA08)

This model is one of the NGA project models
that were obtained based on 1574 records from 58
events for predicting PGA, PGV, and acceleration
response spectra with 5% damping for periods
ranging from 0 to 10 seconds. The main predictor
parameters in BA08 are moment magnitude, closest
horizontal distance to the surface projection of the
fault plane (RJB), and the averaged shear-wave
velocity from the surface to 30 m VS30.

5.12. Chiou and Youngs [25] (CY08)

This model was driven by using the PEER NGA
database of 1950 records from 125 events. CY08
predicts PGA, PGV, and acceleration response spec-
tra with 5% damping for periods ranging between
0.01 and 10 seconds. The model incorporates the
effect of seismic source scaling, path scaling, and
site effects.

5.13. Abrahamson and Silva [22] (AS08)

AS08 has been obtained to predict PGA, PGV,
and acceleration response spectra with 5% damping
for periods ranging between 0.01 and 10 seconds.
The corresponding authors used 2754 strong-motion
records from 135 earthquake events of the PEER
NGA database. This model obtained from site
response model, hanging-wall model, depth-to-top of
rupture model, large distance model, soil depth model,
and constant displacement model.

The nominated GMPE models are summarized in
Table (4) including the valid range of magnitude
and distance. In this study, the result of Kaklamanos'
technical note has been used in order to reduce
uncertainties and convert all input variables of
GMPE models into a unique definition [37]. In addi-
tion, all GMPE models use the moment magnitude
scale  except Getal07 model in which the transition
equations for magnitude measures have been used
[38].

6. Residuals Analysis

The residuals analysis is the main technique to
choose an appropriate model among the numerous
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Magnitude Distance (km) Dominant Region Category Abbreviation GMPE No 
5.0-7.3 15-135 Iran 1 Seta12 Saffari et al. [15] 1 
4.4-7.5 1-200 Iran 1 Zetal12 Zafarani et al. [29] 2 
4.5-7.5 5-150 Iran 1 Getal07 Ghodrati et al. [30] 3 
5.0-7.6 0-100 Europe, Middle east 2 AB10 Akkar and Bommer [31] 4 
3.5-7.6 0-200 Turkey 2 AC10 Akkar and Cagnan [32] 5 
5.0-7.5 0-100 Europe, Middle east 2 Aetal05 Ambraseys et al. [33] 6 
5.0-7.4 5-300 Turkey 2 Ozetal04 Ozbey et al. [34] 7 
4.0-7.5 1-250 Turkey 2 KG04 Kalkan and Gulkan [35] 8 
4.0-6.9 0-100 Italy 2 Bindi10 Bindi et al. [36] 9 
4.0-7.5 0-200 California 3 CB08 Campbell and Bozorgnia [24] 10 
5.0-8.0 0-200 California 3 BA08 Boor and Atkinson [23] 11 
4.0-8.0 0-200 California 3 CY08 Chiou and Youngs [25] 12 
5.0-8.5 0-200 California 3 AS08 Abrahamson and Silva [22] 13 

 

Table 4. Nominated ground motion prediction equations.

ground motion prediction equations. The residual is
defined by Eq. (4) as the subtraction of the natural
logarithm of the predicted value from the natural
logarithm of the observed value in which each data
point has one residual.

ijiijijij YLnLnYr ε+η=−=
)

                                (4)

where LnYij is the observed value and LnYij is the
predicted value of jth record of ith event. ηi and εij
are, respectively, the inter-event residual and the
intra-event residual, Eqs. (5) and (6).
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6.1. Residuals Distribution

The perfect form of the obtained residuals in the
previous section has a normal distribution with zero
mean and unit variance (µ = 0, σ = 1). The fitness of
the resulted residuals to the ideal form indicates the
level of compatibility of the applied ground motion
model with the recorded data. There are various
statistical tests in order to evaluate the goodness of
fitness such as z-test and Lilliefors test [39]. The
null hypothesis in the z-test is that the mean of the
normalized residual set is zero when the residuals
are assumed to have a normal distribution with unit
variance [39]. The null hypothesis in the Lilliefors-
test is that data come from a normal distribution
when the mean and the variance of the distribution
are unidentified [39].

The resulted p-values of these two hypothesis
tests indicate acceptable or unacceptable null hypoth-
esis with respect to a given data. A small p-value
means significant difference between observed and
predicted amounts of models and a large p-value
referred to more acceptable model [40]. Table (5)
shows the results of the mentioned tests in the
current study. In this table, the logical value H = 1
belongs to the rejection of the null hypothesis at
the 5% significance level in which H = 0 is reversed.

As seen in Table (5), all of the candidate models
have normal distribution based on the Lilliefors test;
however, the null hypothesis can be rejected for
the majority of the candidate models based on the
z-test. It worth emphasizing that the mentioned
traditional hypothesis tests only check for one

Lilliefors-Test z-Test 
Model 

P-value H P-value H 
*GP Model 0.4957 0 0.8892 0 

Setal12 0.5774 0 0.9961 0 
Zetal11 0.6977 0 0.0447 1 
Getal07 0.8269 0 0.0547 0 
AB10 0.3575 0 8.47E-7 1 
AC10 0.2815 0 3.68E-50 1 
Aetal05 0.8630 0 4.85E-5 1 

Ozetal04 0.4968 0 2.6e-27 1 
KG04 0.2574 0 0.8471 0 
Bindi10 0.7171 0 7.62E-5 1 
CB08 0.9553 0 0.3862 0 
BA08 0.9153 0 2.94E-4 1 

CY08 0.2619 0 3.27E-5 1 
AS08 0.8010 0 0.0323 1 

 
*GP Model: the obtained model by GP and optimized by GA

Table 5. Results of the hypothesis tests.
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hypothesis, i.e. normal distribution or zero mean;
hence, they are not perfect tools for evaluating the
nominated GMPEs. That is, additional techniques
have been employed in order to assess the ground
motion models as discussed in the following
sections.

6.2. Error Terms, Coefficient of Determination,
Information Theoretic Method and Coeffi-
cient of Efficiency

The error terms are the criteria for assessing the
accuracy of the chosen GMPEs. In this study, two
error criteria, i.e. Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) as written, respec-
tively, in Eqs. (7) and (8) are used to quantify how
accurate the models predict ground motion param-
eters.

N

XX
RMSE N

preobs∑ −
=

2)(
                               (7)

N

XX
MAE N

preobs∑ −
=                                       (8)

In statistics, the coefficient of determination
(denoted by R2) is a criterion to show how well a
model predicts outcomes. This measure is most
often seen as a number between zero and unity. A
large value of the coefficient of determination
indicates the model perfectly fits the data. Eq. (9)
represents the mathematical form of the coefficient
of determination which is used in the current study.
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In Eqs. (7), to Eq. (9) Xobs and Xpre are, respec-
tively, the observed and the predicted values and
N is the total number of records in the data set.

The information theoretic method is a modern
powerful technique for evaluating models [8]. The
quantitative assessment between different candidate
models requires a meaningful distance measure based
on an information theoretic framework; this measure
is given by the Kullback-Leibler distance [41]. The
Kullback-Leibler distance between two probabilistic
models g1 and g2 is presented as written in Eq.
(10):
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where Ef  is the expected value taken with respect to
f. Here, for a base 2 logarithm, its unit is bit. As a
consequence, by means of the average sample log
likelihood definition, the LLH criterion is defined,
Eq. (11).
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The low LLH value shows the good appropriate-
ness of the candidate models.

The Nash-Sutcliffe efficiency coefficient (denoted
by E) is employed to quantify the predicted values
with the observed values [42]. This coefficient is
determined in logarithmic space via Eq. (12):
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where m is the number of periods under consider-
ation (in this study, m = 1), n is the number of records
in the database, ijLnY  are the observed values, ijYLn ˆ

are the predicted values, and ijYLn  is the mean of
ijLnY . This criterion can be varied between  and

100%. The higher indicator represents better
conformity between the predicted values and the
observed values. An efficiency of 100% (E = 1)
corresponds to a perfect match of predicted models
to the observed data, whereas an efficiency of zero
(E = 0) indicates that the model predictions are as
accurate as the mean of the observed data, while
the negative E values show that the arithmetic mean
of the observed values has a greater prediction
accuracy than the model itself [42]. As the Nash-
Sutcliffe model is more sensitive to the additive and
the multiplicative difference between the observa-
tions and the predictions than the other goodness-
of-fit statics, the researchers find out this criterion
as a better indicator [43]. Table (6) includes the
result of the mentioned criteria.
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Table 6. Result of Error terms (RMSE, MAE), LLH, E, and R2.

RMSE MAE 
Model LLH R2 E 

ijr  ][int er
ir  ][intra

ijr  ijr  ][int er
ir  ][intra

ijr  

GP Model 1.9368 0.9454 33.4252 0.9264 0.5643 0.7858 0.7470 0.4269 0.6272 
Setal12 2.2913 0.9399 22.9985 0.9598 0.6383 0.7704 0.7787 0.4891 0.6085 
Zetal12 1.9712 0.9460 34.1801 0.9212 0.5750 0.7651 0.7385 0.4135 0.6049 
Getal07 2.9947 0.9393 24.4972 0.9742 0.6774 0.7771 0.7855 0.5424 0.6310 
AB10 2.5466 0.9341 22.9090 1.0320 0.6920 0.7949 0.8524 0.5133 0.6388 
AC10 3.2676 0.8651 -64.3621 1.4556 1.2127 0.7918 1.2117 1.1202 0.6251 
Aetal05 2.4133 0.9364 25.7504 1.0115 0.6697 0.7907 0.8234 0.4865 0.6359 
Ozetal05 3.6427 0.9032 -17.8296 1.2324 0.9556 0.7841 0.9839 0.8423 0.61152 
KG04 2.2981 0.9444 32.3028 0.9342 0.6179 0.7716 0.7568 0.4760 0.6127 
Bindi10 2.2288 0.9310 19.1787 1.0522 0.6815 0.8675 0.8593 0.4886 0.6787 
CB08 2.7452 0.9433 30.9763 0.9433 0.6211 0.7710 0.7588 0.4607 0.6167 
BA08 2.6496 0.9396 28.8792 0.9737 0.7443 0.6953 0.7660 0.5649 0.5382 
CY08 2.5322 0.9378 24.5607 0.9889 0.6403 0.7816 0.8164 0.4568 0.6183 
AS08 2.2605 0.9425 29.9721 0.9501 0.6120 0.7771 0.7708 0.4301 0.6199 

 

Figure 3. Comparison of the observed versus predicted PGA using the GP model and AC10 relationship, along with the least-
squares regression line and the ideal one-to-one line.

It should be mentioned that the Nash-Sutcliffe
efficiency can also be used to quantitatively describe
the accuracy of predicting models and measure the
dispersion about the one-to-one line. Figure (3)
displays the comparison of the observed and predicted
PGA by GP model and AC10 model within the
selected database and also confirms the results of
coefficient of efficiency shown in Table (6).

As it is illustrated in Table (6), GP model has the
lowest LLH value among the other models; hence,
the purpose of the defined fitness function for GP
and GA is achieved according to this criterion. After
GP model, Zetal12 model, which is based on the
Iranian database, has lowest LLH value. According
to the coefficient of efficiency criterion, GP model

and Zetal12 have the best results among the other
candidate models, whereas AC10 and Ozetal05 have
efficiency less than zero. GP model and Zetal12 are
the best models among the other models with the
lowest error values and the highest coefficient of
determination. In addition, AB10, AC10, Aetal05,
Ozetal04, and Bindi10 models, which are correspond-
ing to Europe and Middle East regions, have the
lowest coefficient of determination and the highest
error values. Therefore, the authors decided to
exclude these two models in this stage of research.
Furthermore, NGA models do not show enough
reasonable results than the other models in which it
seems they are not superior models for the study
region.
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6.3. Residuals Bias

One of the important requirements for choosing
an appropriate GMPE model is unbiased residuals
toward earthquake parameters [44]. In this study, a
hypothetical test is applied by means of the general-
ized linear model regression in order to evaluate the
inherent bias. The null hypothesis is that the slope
and the Y-intercept of the fitted linear line to the
residuals toward different seismic parameters is
zero. Two P-values (Pa and Pb ) are achieved by this
hypothetical test in which the highest P-value
indicates the lowest bias in the residuals. For the

P-values 
Mw vs. rij R vs. rij VS30 vs. rij Model Mean of 

Residuals 
Pb

* Pa
** Pb Pa Pb Pa 

GP model -0.0104 0.7455 0.7344 0.5559 0.5594 0.9574 0.9878 
Setal12 3.8E-04 0.0062 0.0065 0.0013 0.0036 0.8332 0.8477 
Zetal12 0.1500 0.7744 0.9690 0.6143 0.1236 0.5498 0.1408 
Getal07 -0.1452 0.0070 0.0038 0.1622 0.0304 0.0226 0.2263 
AB10 0.3881 0.4316 0.8026 0.1744 0.3388 0.2801 0.0015 
AC10 1.1131 0.5009 0.0155 0.6622 1.5E-12 0.2921 2.9E-08 
Aetal05 0.3202 0.2048 0.4061 0.0646 0.8866 0.2647 0.0047 
Ozetal04 0.8089 0.0309 6.3e-04 0.0588 2.1e-12 0.9052 2.9e-06 
KG04 0.0144 0.0094 0.0105 0.7872 0.7365 0.7888 0.8769 
Bindi10 0.3128 0.2950 0.1478 0.8660 0.1340 0.8627 0.1184 
CB08 0.0648 0.0251 0.0337 0.6090 0.9829 0.6234 0.9569 
BA08 0.2871 0.3799 0.6594 0.8932 0.0718 0.9298 0.1952 
CY08 0.3114 0.0941 0.2403 0.0594 0.5370 0.7584 0.1223 
AS08 0.0016 0.0647 0.1136 0.5566 0.5213 0.2666 0.972 

 

P-values 
Mw vs. ri

[inter] R vs. rij
[intra] VS30 vs. rij

[intra] Model Mean of 
Residuals 

Pb Pa Pb Pa Pb Pa 
GP Model -0.0104 0.6613 0.6019 0.5735 0.6273 0.3669 0.4144 
Setal12 3.8E-04 0.0267 0.0247 0.2324 0.2815 0.3007 0.3507 
Zetal12 0.1500 0.6052 0.6866 0.5397 0.5968 0.6477 0.6794 
Getal07 -0.1452 0.0357 0.0198 0.6396 0.6804 0.2960 0.3451 
AB10 0.3881 0.2776 0.4895 0.6783 0.7075 0.9861 0.9875 
AC10 1.1131 0.7841 0.1339 0.6371 0.6840 0.0559 0.0835 
Aetal05 0.3202 0.2200 0.3409 0.4526 0.4974 0.8133 0.8322 
Ozetal04 0.8089 0.1901 0.0301 0.4188 0.4855 0.4001 0.4465 
KG04 0.0144 0.0428 0.0389 0.1488 0.2127 0.2089 0.2555 
Bindi10 0.3128 0.6279 0.4485 0.7008 0.7279 0.2885 0.3406 
CB08 0.0648 0.0535 0.0547 0.4862 0.5479 0.1797 0.2247 
BA08 0.2871 0.3571 0.4770 0.6895 0.7291 0.4602 0.4903 
CY08 0.3114 0.1312 0.2280 0.4407 0.5063 0.1394 0.1788 
AS08 0.0016 0.1359 0.1711 0.8290 0.8522 0.0499 0.0758 

 

Table 7b. Result of residuals biases.

*Pb: P-value for the slope of fitted line by regression.
**Pa: P-value for the Y-intercept of fitted line by regression.

entire candidate models the residuals, Eq. (4), the
inter-event residuals, Eq. (5), and the intra-event
residuals, Eq. (6), are calculated based on the avail-
able Iranian strong-motion data, in order to  examine
the bias for the candidate model predictions. Tables
(7a) and (7b) show the results of the hypothetical
test to examine the bias.

As seen in Tables (7a) and (7b), the mean value
of the residuals is calculated in order to show if
the model prediction is over-estimated or under-
estimated. As a consequence, AC10, Aetal05,
Ozetal04, BA08, CY08, AB10, and Bindi10 are

Table 7a. Result of residuals biases.
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remarkably under-estimated models. This table
again implies that GP model gives more unbiased
estimates of LnPGA for the considered database.

6.4. Stability of Ground Motion Prediction Equa-
tions [45]

Each GMPE is obviously obtained based on a
specific ground motion database. A small change in
the chosen ground motion database should not affect
significantly on the GMPE outputs. In other words, if
a GMPE is strongly sensitive to a small change of
ground motion database, then, the predicted values
may not be so reliable. To quantify this phenomenon,
a sensitivity of the GMPE models to their own
databases is evaluated in this section as the following
steps:
1. For each GMPE, a reduced number of ground

motion records, say N, is selected based on
uniformly random selection.

2. The P-values based on Magnitude, Distance and
Site condition as well as LLH, R-squared and
RMSE are calculated based on the reduced
database defined in Step 1.

3. Steps 1 and 2 are repeated for optimized K times
to avoid any bias from the random selection

process.
4. Step 1, 2 and 3 are repeated for N = 70 to

N = 'maximum number of records within data
base, with the increment of 10.

5. The obtained indicators that were calculated in
Step 2 can be shown versus N e.g. Figure (4) in
the case of GP model.
The process of choosing the optimized K factor

is summarized as the following steps and the result is
shown in Figure (5):
l Select an initial assumption for the number of

subsets (GMRs or events), say K = 50, with a
constant number of GMRs, say N = 1000, in
this study.

l The p-values corresponding to the residuals,
versus different types of seismic input param-
eters, are calculated based on the chosen
subset, which was defined in Step 1 (e.g. intra-
event residuals versus RRUP).

l The median p-value is calculated and stored.
l Steps 1, 2 and 3 are repeated for T times to

avoid any bias from the random selection
process, say T = 50, in this study.

l The interval between the maximum and mini-
mum of the stored median p-values in step 3 is

Figure 4. Re-sampling of the GP model for 400 uniformly random selected databases, towards moment magnitude, distance
measure, shear-wave velocity, LLH, R2, and RMSE.
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calculated.
l Steps 1 to 5 are repeated by a constant incre-

ment (e.g. 50) in K parameter until the interval
in step 5 is less than 5%.

l The obtained intervals calculated in Step 5,
are shown versus K factor.

6. The average of each indicator, in Step 2 for a
specific N samples, can be calculated as a final
indicator. It makes possible to show the final
indicator in one plot for all GMPEs as seen in
Figure (6) in the case of Moment magnitude,
Distance, Site condition, LLH, R-squared and
RMSE.

Figure 5. The presses of choosing the number of random data
bases for re-sampling analysis.

Figure 6. Re-sampling of the candidate models for 400 uniformly random selected databases, towards moment magnitude, distance
measure, and shear-wave velocity, LLH, R2, and RMSE.
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It is worth mentioning that an unbiased model
should move ascending, as seen in Figure (6), while
the sample size is increasing. Except GP model and
Zetal12 model, other models have descending trend
towards moment magnitude as shown in Figure (6).
Additionally, as seen in Figure (6), except Getal07,
AB10, CY08, and Setal12 in the case of Pb-values
versus distance measure and CB08, AB10, and
Getal07 models in the case of Pb-values versus
shear-wave velocity measure, other models are more
stable. GP model has the lowest LLH value. GP
model and Zetal12 have the lowest RMSE values
and the highest R-squared values. As a consequence,
the re-sampling results confirm that only the
achieved model in this study, GP model is superior
and it is more stable with ascending behaviour
versus all the seismic variables when compared with
the other models.

7. Conclusion

In this study, the new predictive PGA model has
been obtained by means of the new fitness function
based on LLH criteria and re-sampling analysis, for
Iranian seismic plateau database. Furthermore, in
order to assess the obtained model, the traditional
and modern approaches have been employed to
evaluate the ground motion prediction equations,
which are nominated to be used for Iranian database.
Based on the traditional hypothesis test, such as
Z-test and Lilliefors test, all the candidate models
have normal distribution; however, the majority of
the models do not have zero mean residuals. Other
results from different statistical and mathematical
methods such as error terms (RMSE & MAE),
coefficient of determination (R-squared), the infor-
mation-theoretical method (LLH) and coefficient of
efficiency (E) indicate that GP model has the best
performance in comparison to the other models.
Another important test, which is applied in this paper,
is checking for no bias on residuals. GP model is not
significantly biased between the other models in
this case. Finally, the results based on the new
proposed approach in this study for evaluating stabil-
ity of models, by re-sampling analysis, indicate that
GP model is more stable in comparison to the other
selected models.
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Appendix Table A.
Table A. The records that is used in this study

N.O Event Station Name Record ID Latitude (deg) Longitude (deg) Epi-Distance (km) Vs30 (m/s) 
1 Bajestan 1086.00 34.52 58.18 166.00 710.00 
2 Boshroyeh 1083-1 33.86 57.43 74.00 564.00 
3 Deyhook 1082-1 33.29 57.50 19.00 843.00 
4 

1978/09/16 

Tabas 1084-1 33.58 56.92 58.00 645.00 
5 Gonabad 1142-1 34.35 58.68 94.00 529.00 
6 Ghaen 1139.00 33.73 59.22 53.00 889.00 
7 Khezri 1140.00 34.02 58.81 76.00 701.00 
8 Bajestan 1134-2 34.52 58.18 143.00 710.00 
9 Birjand 1137.00 32.87 59.21 137.00 787.00 

10 Kakhk 1135.00 34.14 58.66 91.00 1961.00 
11 

1979/11/27 

Sadeh 1138-1 33.33 59.24 90.00 1180.00 
12 Abbar 1362-1 36.93 48.95 32.00 691.00 
13 1990/06/20 Ghazvin 1353-1 36.26 50.00 98.00 456.00 
14 Babandar 1498.00 28.98 53.22 55.00 885.00 
15 Farashband 1497.00 28.87 52.07 63.00 630.00 
16 Firuzabad 1493-2 28.84 52.57 29.00 894.00 
17 Kavar 1491.00 29.20 52.69 18.00 753.00 
18 Maymand 1490-2 28.87 52.75 24.00 881.00 
19 Zanjiran 1502-9 29.07 52.62 10.00 936.00 
20 

1994/06/20 

Zarrat 1492-16 29.09 52.85 19.00 720.00 
21 1997/02/04 Marvertappeh 1674.00 37.90 55.96 136.00 538.00 
22 Germi 1702.00 39.05 48.06 109.00 712.00 
23 Kariq 1833-2 37.92 48.06 35.00 589.00 
24 

1997/02/28 
Namin 1724.00 38.42 48.48 71.00 1236.00 

25 Marak 1750-2 32.92 59.43 105.00 872.00 
26 Mussaviyeh 1770.00 33.29 58.91 105.00 848.00 
27 Sangan 1753.00 34.40 60.25 80.00 941.00 
28 Khezri 1740.00 34.02 58.81 188.00 701.00 
29 Feyzabad 1741.00 35.01 58.78 162.00 561.00 
30 Gonabad 1742.00 34.37 58.68 120.00 683.00 
31 

1997/05/10 

Mud 1751.00 32.71 59.52 127.00 961.00 
32 Abaraq 1864-1 28.10 57.23 90.00 641.00 
33 1998/03/14 Baqein 1866.00 30.19 56.82 76.00 516.00 
34 Noorabad 2251.00 34.07 47.97 36.00 758.00 
35 Boroujerd 2183-1 33.89 48.75 69.00 579.00 
36 

1999/08/21 
Aleshtar 2196-2 33.86 48.25 47.00 621.00 

37 Ghaemiyeh 2126-3 29.85 51.59 48.00 617.00 
38 Kazeroon 2121-2 29.62 51.67 28.00 352.00 
39 Balaadeh 2131-2 29.83 52.40 29.00 1380.00 
40 Gooyom 2123-2 29.83 52.40 56.00 598.00 
41 

1999/05/06 

Khan Zeynioun 2130-1 29.67 52.15 26.00 773.00 
42 Balaadeh 2131-3 29.29 51.94 18.00 1380.00 
43 Gooyom 2123-3 29.83 52.40 64.00 598.00 
44 

1999/05/06 
Khan Zeynioun 2130-2 29.67 52.15 36.00 773.00 

45 Kazeroon 2216-1 29.62 51.67 36.00 352.00 
46 Romghan 2217.00 29.37 52.16 34.00 1362.00 
47 Ghaemiyeh 2218-3 29.85 51.59 60.00 617.00 
48 

1999/10/31 

Balaadeh 2219-12 29.29 51.94 19.00 1380.00 
49 Armanijan 2706-2 34.61 47.35 25.00 390.00 
50 Aran 2707-2 34.41 47.92 58.00 175.00 
51 Bistoon 2708-2 34.38 47.43 35.00 750.00 
52 Sahneh 2710-2 34.47 47.68 39.00 375.00 
53 Sonqor 2711-2 34.78 47.60 37.00 1477.00 
54 

2002/04/24 

Lenj Ab 2747-2 34.87 47.28 40.00 375.00 
55 Abegarm 2748-1 35.76 49.28 18.00 199.00 
56 Bahar 2750.00 34.89 48.44 108.00 913.00 
57 Bakandi 2787-1 36.40 49.57 93.00 308.00 
58 Buinzahra 2759.00 35.77 50.06 79.00 255.00 
59 Darsejin 2769-2 36.02 49.24 46.00 636.00 
60 Deh-Jalal 2768.00 36.32 48.70 88.00 748.00 
61 Ghohrud 2778.00 35.47 48.06 105.00 414.00 
62 Goltappeh 2777.00 35.22 48.20 102.00 1077.00 
63 Kabodarahang 2754-1 35.21 48.72 65.00 613.00 
64 Razan 2756-1 35.39 49.03 33.00 314.00 
65 Saei-Ghale 2772.00 36.31 49.07 71.00 642.00 
66 

2002/06/22 

Shirinsu 2781.00 35.49 48.45 70.00 813.00 
 67 Armanijan 2933-3 34.61 47.35 24.00 390.00 

68 Aran 2934.00 34.41 47.92 48.00 175.00 
69 Bistoon 2935.00 34.38 47.43 28.00 750.00 
70 Sahneh 2936-1 34.47 47.68 29.00 375.00 
71 Sonqor 2937-1 34.78 47.60 34.00 1477.00 
72 

2002/12/24 

Lenj Ab 2999-1 34.87 47.28 44.00 375.00 
73 Hajiabad-3 3040-1 28.35 54.42 27.00 561.00 
74 Jouyom 3041-1 28.26 53.98 21.00 1244.00 
75 Zahedshahr 3042-1 28.74 53.80 60.00 390.00 
76 

2003/07/10 

Jahrom 3045-1 28.50 53.55 64.00 375.00 
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N.O Event Station Name Record ID Latitude (deg) Longitude (deg) Epi-Distance (km) Vs30 (m/s) 
77 Hajiabad-3 3040-3 28.35 54.42 38.00 561.00 
78 Jouyom 3041-2 28.26 53.98 18.00 1244.00 
79 Zahedshahr 3042-2 28.74 53.81 63.00 390.00 
80 

2003/07/10 

Jahrom 3045-2 28.50 53.55 61.00 375.00 
81 Fahraj 3067.00 28.95 58.89 87.00 280.00 
82 Nosratabad 3069.00 29.86 59.98 97.00 1154.00 
83 

2003/08/21 
Ryqan 3070.00 28.65 59.01 85.00 437.00 

84 Hajiabad-3 3134-2 28.35 54.42 44.00 561.00 
85 Jouyom 3135.00 28.26 53.98 27.00 1244.00 
86 

2003/11/28 
Doobaran 3136-5 28.41 54.18 30.00 1363.00 

87 Bam 3168-2 29.09 58.35 4.00 499.00 
88 Jiroft 3170-2 28.67 57.74 74.00 343.00 
89 Mohamadabad 3162-1 28.91 57.89 49.00 507.00 
90 Anduhjerd 3164.00 30.23 57.75 143.00 566.00 
91 Golbaf 3155-2 29.89 57.73 111.00 365.00 
92 

2003/12/26 

Joshan 3156.00 30.12 57.61 140.00 776.00 
93 Hasan Keyf 3333.00 36.50 51.15 45.00 339.00 
94 Moalemkelayeh 3367.00 36.45 50.47 100.00 490.00 
95 Noshahr 3368-1 36.65 51.49 43.00 165.00 
96 Nur 3369-1 36.57 52.01 53.00 178.00 
97 

2004/05/28 

Taleqn 3318.00 36.18 50.76 72.00 462.00 
98 Aliabad 3542.00 36.90 54.85 52.00 562.00 
99 Bandar-e-Gaz 3557-2 36.76 53.95 63.00 347.00 

100 Dibaj 3590.00 36.43 54.23 87.00 526.00 
101 Gomishan 3546.00 37.07 54.08 47.00 322.00 
102 Gonbad-e-Kavoos 3544.00 37.24 55.16 69.00 402.00 
103 Gorgan 3545.00 36.84 54.39 46.00 291.00 
104 Inche Broun 3560-1 37.46 54.72 51.00 283.00 
105 Minoodasht 3639-1 37.23 55.37 86.00 449.00 
106 

2004/10/07 

Ramyan 3551.00 37.02 55.14 68.00 827.00 
107 Aq Qala 3608.00 37.01 54.46 59.00 341.00 
108 Aliabad 3612.00 36.90 54.85 75.00 562.00 
109 Bandar-e-gaz 3609.00 36.76 53.95 98.00 347.00 
110 Gomishan 3607.00 37.07 54.08 67.00 322.00 
111 Gorgan 3623.00 36.84 54.39 77.00 291.00 
112 Inche Broun 3618.00 37.46 54.72 36.00 283.00 
113 Minoodasht 3639-5 37.23 55.37 85.00 449.00 
114 

2005/01/10 

Ramyan 3621-2 37.02 55.14 80.00 827.00 
115 Chatrud 3660-1 30.61 56.91 27.00 852.00 
116 Davaran 3702.00 30.58 56.19 57.00 752.00 
117 Deh-e-Loulo 3679.00 30.53 57.29 61.00 617.00 
118 Horjand 3688.00 30.68 57.15 42.00 999.00 
119 Ravar 3661.00 31.26 56.79 55.00 853.00 
120 

2005/02/22 

Zarand 3671-1 30.81 56.58 19.00 226.00 
121 Bandar-e-Abas1 3912.00 27.19 56.29 62.00 337.00 
122 Bandar-e-Abas2 3917.00 27.19 56.30 62.00 375.00 
123 Bandar-e-Khamir 3913.00 26.95 55.58 39.00 679.00 
124 Kahoorestan 3910.00 27.22 55.56 61.00 807.00 
125 Qeshm 3909.00 26.96 56.28 45.00 757.00 
126 Fin 3916.00 27.63 55.90 96.00 681.00 
127 

2005/11/27 

Suza 3915-1 26.78 56.07 21.00 1334.00 
128 Chalan Choolan 4027-5 33.66 48.91 24.00 428.00 
129 Boroujerd 4023-2 33.89 48.75 34.00 579.00 
130 Dorood 4022-1 33.49 49.06 37.00 771.00 
131 Khoramabad1 4019-1 33.49 48.36 47.00 375.00 
132 Chaghalvandi 4018-2 33.66 48.55 29.00 616.00 
133 Shool Abad 4055-2 33.18 49.19 67.00 1084.00 
134 Tooshk-e-Ab-e-Sar 4035-2 33.77 48.57 31.00 891.00 
135 

2006/03/30 

Darreh-Asbar 4052-2 33.45 49.06 40.00 935.00 
 136 Chaghalvandi 4018-3 33.66 48.55 35.00 616.00 

137 Khoram Abad 4019-2 33.49 48.36 54.00 375.00 
138 Dorood 4022-2 33.49 49.06 23.00 771.00 
139 Aleshtar 4025.00 33.87 48.26 67.00 621.00 
140 Chalan Choolan 4027-8 33.66 48.91 13.00 428.00 
141 Darreh-Asbar 4052-3 33.45 49.06 67.00 935.00 
142 Noor Abad 4024.00 34.07 47.97 101.00 758.00 
143 Shool Abad 4055-3 33.18 49.19 56.00 1084.00 
144 

2006/03/31 

Tooshk-e-Ab-e-Sar 4035-3 33.77 48.57 38.00 891.00 
145 Khoram Abad 4136.00 33.49 48.36 52.00 375.00 
146 Shool Abad 4055-4 33.18 49.19 78.00 1084.00 
147 Tooshk-e-Ab-e-Sar 4035-6 33.77 48.57 31.00 891.00 
148 Dorood 4032.00 33.49 49.06 47.00 771.00 
149 Boroujerd 4034.00 33.89 48.75 32.00 579.00 
150 

2006/03/31 

Chaghalvandi 4044.00 33.66 48.55 33.00 616.00 
151 Tomban 4147-13 26.77 55.86 13.00 778.00 
152 Bandar-e-Khamir 4152.00 26.95 55.58 33.00 679.00 
153 Qeshm 4128.00 26.96 56.28 52.00 757.00 
154 

2006/06/28 

Bandar-e-Abas2 4144.00 27.19 56.30 68.00 375.00 
 

Table A. Continue.
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Sahar Rahpeyma, Alireza Azarbakht, and Mehdi Mousavi

N.O Event Station Name Record ID Latitude (deg) Longitude (deg) Epi-Distance (km) Vs30 (m/s) 
155 Doobaran 4573.00 28.41 54.18 33.00 1363.00 
156 Jouyom 4574.00 28.26 53.98 14.00 1244.00 
157 

2008/05/05 
Zahedshahr 4575.00 28.74 53.81 65.00 390.00 

158 Bandar-e-Khamir 4672.00 26.95 55.58 38.00 679.00 
159 Tomban 4686-3 26.77 55.86 23.00 778.00 
160 Suza 4678-1 26.78 56.07 40.00 1334.00 
161 Tabl 4675-1 26.76 55.73 17.00 931.00 
162 

2008/09/10 

Kahoorestan 4676.00 27.22 55.56 66.00 807.00 
163 Tabl 4675-2 26.76 55.73 22.00 931.00 
164 Suza 4678-5 26.78 56.07 47.00 1334.00 
165 

2008/09/11 
Tomban 4686-19 26.77 55.86 30.00 778.00 

166 Bandar-e-Abas1 4687-1 27.19 56.29 60.00 337.00 
167 Suza 4690-1 26.78 56.07 17.00 1334.00 
168 

2008/09/17 
Qeshm 4688-1 26.96 56.28 41.00 757.00 

169 Suza 4732-2 26.78 56.07 35.00 1334.00 
170 Tabl 4735.00 26.76 55.73 14.00 931.00 
171 Bandar-e-Abas1 4734.00 27.19 56.29 70.00 337.00 
172 

2008/12/07 

Bandar-e-Khamir 4736.00 26.95 55.58 25.00 679.00 
173 Bandar-e-Abas1 4742.00 27.19 56.29 68.00 337.00 
174 Suza 4739-1 26.78 56.07 33.00 1334.00 
175 Tabl 4741-1 26.76 55.73 15.00 931.00 
176 

2008/12/08 

Qeshm 4737-1 26.96 56.28 54.00 757.00 
177 Suza 4739-2 26.78 56.07 30.00 1334.00 
178 Qeshm 4737-2 26.96 56.28 55.00 757.00 
179 

2008/12/09 
Tabl 4741-2 26.76 55.73 16.00 931.00 

 

Table A. Continue.


