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1. Introduction

Prediction of ground motion intensity measures
is one of the most important parts of Seismic
Hazard Analysis (SHA). Generally, SHA, can be
performed either probabilistically (PSHA) or deter-
ministically (DSHA) [1], in both of which Ground
Motion Prediction Equations (GM PEs) are inherent
parts.

Researchers have been developed two basic
different methodologies, i.e. empirical and physical
relationships, for attaining prediction equation
models according to site geology and distribution of
events. Empirical modes, which are based on math-
ematical methods, describethe observations by means
of regression analysis on a specific site with
abundant data set. On the other hand, physical mod-
ds, which describe seismic wave's generation and
propagation, are used in a specific site with lack of
observations. Recently, beside two mentioned
approaches, methods of information processing

i.e. genetic algorithm and genetic programming (GP), for obtaining Peak Ground
Acceleration (PGA) prediction model in the case of Iranian database. The proposed
GP model is compared with a set of existing attenuation relationships via several
traditional and modern mathematical and statistical methods. A new re-sampling
approach is also introduced to assess the stability of the chosen models. The
obtained model shows clearly more consistency with the local data in comparison
with the other selected models.

known as soft computing techniques, such as
Evolutionary Algorithms (EA), have been used in
order to obtain attenuation relationships as a modern
approach [2-5]. Evolutionary algorithms, specifically
genetic programming (GP) and genetic algorithm
(GA), are optimization techniques based on the
rules of natural sdection [6-7]. Although, using GP
and GA methods does not reduce the uncertainties;
however, there is more complicated interaction
among the observation and prediction values [3].

The main aim of this study is to derive a new
Peak-Ground-Accederation (PGA) attenuation model
via GP and GA methods based on an Iranian
database. Theincorporation of information-theoretic
method [8] and re-sampling analysis has been
proposed here in order to improve the fitness
functions of GP and GA. Afterwards, the new PGA
attenuation model is compared with aset of available
prediction modds.
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2. Genetic Algorithm and Genetic Programming

Genetic algorithm, as the most popular member
of evolutionary algorithms, is the best known
intellectual optimization technique based on the
principles of natural selection and survival of the
fittest [7, 9, 10], initially developed by John Holland
at the University of Michigan in 1975.

Genetic programming, as a particular form of
genetic algorithm, was introduced by John Koza in
1992. In this subset of evolutionary algorithm, the
absol ute solution, without any explicit programming,
is obtained by using the concepts of genetic
algorithm and the parse trees (tree structures). The
development of theinitial populationin GP, consisting
of functions and terminals, is accomplished by
means of biological selection and reproduction [6].

The following three main steps are key dements
within any Genetic programming procedure [6]:

1. Generatean initial population of random compo-
sitions of functions and terminals.

2. Repeat (below) steps 2.1 and 2.2 until the estab-
lishment of the program's suitable and final
condition:

2.1. Executes each program and assigns a fitness

valueto it according to the fitness function.

2.2. Create a new population of computer pro-

grams by means of the genetic operators
(reproduction, mutation, and cross-over).

1 Reproduction: Copy thebest existing programsin
the new population.

1 Mutation: Select an existing program, change a
node of the individual randomly and move the
program to the new population.

1 Cross-over: Sdect two programs and change one
branch with another randomly and move the two
produced programs to the new population.

3. Sdect the best computer program that has been
appeared in any generation.

3. Ground Motion Database

Iran is located in the middle part of the Alpine-
Himalayan seismotectonic belt and is known as one
of the most seismicity active regions in the world.
Several comprehensive studies on geological
characteristics and the seismicity nature of this
region have been carried out [11-13]. Researchers
usually classify Iranian plateau into two major ses-
mic zones i.e. the Central Iran and the Zagros [14].
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Most of the seismic activities are concentrated in the
Zagros region, and less seismic activity is observed
in the central Iran and other regions [12].

The data set used in this study, as seen in Table
(1), consists of 179 strong ground motion records
of 36 earthquake events with moment magnitude
(Mw) ranging from 5.0 to 7.4 and distance ranging
less than 200 km occurred between 1978 and 2008.
The total 179 records have been extracted from the
Iran Strong Motion Network (according to the

Table 1. Ground motion database for Iranian plateau (date is

listed as YYYY/MM/DD).

No Date My *FD **N ***Zone
1 1978/09/16 7.4 10 4 1
2 1979/11/27 7.1 10 7 1
3 1990/06/20 7.3 12 2 1
4 1994/06/20 58 9 7 2
5 1997/02/04 6.5 8 1 1
6 1997/02/28 6 9 3 1
7 1997/05/10 7.2 13 7 1
8 1998/03/14 6.6 5 2 1
9 1999/08/21 5 25 3 2

10 1999/05/06 6.2 7 5 2

11 1999/05/06 5.7 10 3 2

12 1999/10/31 5.2 15 4 2

13 2002/04/24 54 25 6 2

14 2002/06/22 6.4 10 12 1

15 2002/12/24 5.2 20 6 2

16 2003/07/10 58 10 4 2

17 2003/07/10 5.7 15 4 2

18 2003/08/21 59 20 3 1

19 2003/11/28 5 25 3 2

20 2003/12/26 6.5 3 6 1

21 2004/05/28 6.3 27 5 1

22 2004/10/07 56 30 9 1

23 2005/01/10 53 32 8 1

24 2005/02/22 6.3 10 6 1

25 2005/11/27 5.9 12 6 2

26 2006/03/30 51 20 8 2

27 2006/03/31 6.1 12 9 2

28 2006/03/31 51 26 6 2

29 2006/06/28 5.8 12 4 2

30 2008/05/05 52 12 3 2

31 2008/09/10 6.1 12 5 2

32 2008/09/11 5.2 7 3 2

33 2008/09/17 5.2 12 3 2

34 2008/12/07 54 12 4 2

35 2008/12/08 5.1 12 4 2

36 2008/12/09 5 14 3 2

*FD: FD is focal depth (km)

**N: Number of records for each earthquake.

***7Zone: 1 and 2 refer to the Central Iran Zone and Zagros Zone,
respectively.
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Building and Housing Research Center, BHRC
website, last accessed December 2012). Most of
the Iranian earthquake events are reverse-thrust,
strike-slip, or a combination of these two mecha-
nisms[15].

Figure (1), exhibits the distribution of magnitude
versus distance, with displaying different site types.
Thesite classification in this study is the same asthe
one defined in the Iranian code of standard seismic
resistant design of buildings, Standard No. 2800[16],
which includes four classes. Site categories | and Il
(Vo ® 375 m/s) were combined together and con-
Sidered as the rock site, and categories |11 and 1V
(Vggo < 375 m/s) were combined together and named
the soil site.
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Figure 1. Distribution in terms of magnitude, distance and
site classification of study accelerograms recorded
by the BHRC in Iran.

4. A New PGA Prediction Modd

GPLAB, which is used in this paper, is a genetic
programming which is written by Sara Silvain 2007
[17]. This toolbox is an operational and practical
application for different types of users. Recently,
some researchers have used this toolbox for obtain-
ing predictive equations [2, 18].

For using GPLAB, the database is divided into
the training set (80% of the data set) and the testing
Set (20% of the data set), chosen randomly (uniformly
distributed).

The programs in GPLAB (tree structures), are
initialized with one of thethree accessibleinitializing
methods "Full, Grow, and Ramped Half-and-Half"
[6]. In this study, initial population is produced
based on Ramped Half-and-Half method. In the
standard procedure, an equal number of individuals
is initialized for each depth between two and the
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initial tree depth value [17]. The population of trees
resulting from this initialization method is very
diverse, with balanced and unbalanced trees of
bseveral different depths [17].

One of theimportant features of GPLAB is some

appropriaterestrictions on treesdepth or sizeto avoid
bloat that is a phenomenon consisting of an exces-
sive code growthwithout any corresponding improve-
ment in the fitness [6, 17].
In GPLAB, parents are selected for reproduction
according to four usual sampling methods [6, 17]. In
this paper, Lexictour sampling approach was used
for sdecting parents. In this approach, a random
number of individuals are chosen from the population
and the best of them is chosen [17]. Table (2)
indicates important parameters used for running
GPLAB in the current paper.

Table 2. The adoptive parameters for GPLAB.

Function Set -, ¥ Power(x") n=123
Terminals {Mw, R, VSy, Ramped-hal f-and-hal f}
Initial Population Ramped nit (Ramped-hal f-and-half)
Sampling Method Lexi ctour

Operators Mutation, Cross-Over
Elitism Total elitism

Total Data 179

Training Data 145

Testing Data 34

End Point Number of Generations
Population Size 800

Generation 150

Fixed Leve 2 (1 = depth, 2 = nodes)

Real Max Level 40

The GP fitness function based on information-
theoretic method [8] is proposed in order to quantita-
tively assess the predictive modes. In this study, by
using the average sample log likelihood definition,
the LLH criterionis defined as writtenin Eq. (1) and
GPLAB minimized it.

1N
LLH =- nglogz(g(xi ) )

The Expression Tree (ET) of LnPGA, obtained
from genetic programming (GPLAB), is shown
in Figure (2), where X, X,, and X, are moment
magnitude, distance measure, and shear wave
velocity, respectively.

After obtaining theinitial predictivemodd, by GP,
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Figure 2. ET for the proposed GP model (X, X,, and X, are moment magnitude, distance measure, and shear wave velocity,

respectively).

in order to reduce the bias toward different earth-
guake parameters and likewise for reducing the
sensitivity of the initial attenuation model to the
considered database, the GA fitness function is
defined according to Eq. (2) as a combination of
LLH criterion and re-sampling analysis.

Fitness Function=w,; " LLH +

Training Data

2

where Ny istheuniformly distributed random data-
bases (in this study, N, =100), S" is thei™ sample
with n records, §" is the residual’s p-value of §"
versus j" parameter, M is the earthquake moment
magnitude, R is the distance measure, V, is the
shear wave velocity, w,= 0.25 and w, = 0.125 are
the weighting constants based on authors judgment.

The final form of LnPGA is shown in Eq. (3)
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and Table (3) shows the result of the coefficients
achieved by GA.

B
w -

Ln(PGA) = Sort(a, =

8y

2, -'-alewals)"'S (3)
a5 az a - ay |11
Vs (36 R™ +agM " Vgg )

M,, R and V, denote, respectively, the earth-
guake moment magnitude, earthquake distance mea-
sure and shear-wave veocity.

Table 3. The constant coefficients obtained by GA from final
optimized model.

a 1.00 ag 1.00
a 3.44 EY 1.00
as 0.72 aip 1.00
EN 1.00 an 0.056
as 0.11 ap 1.00
as 1.00 aus 1.00
ay 2.33 Siny 0.9276
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5. Sdected Ground M otion Prediction Equations

According to different researches on seismotec-
tonic nature of Iranian Plateau, it has been demon-
strated that all of the earthquake events occurred in
this region are shallow and intra-plate events [19].
Furthermore, meaningful correlation between this
kind of events from different regions, including
Turkey and Californiaisreported by researchers[20].
Based on these facts, the candidate ground motion
prediction eguations are consisted of the following
three classes:

1 The local GMPEs which have been developed
based on the Iranian datasets.

1 The regional GMPEs corresponding to Europe
and Middle East datasets.

1 The global GMPEs developed in the Next

Generation Attenuation (NGA) project.

In 2008, the NGA project, which was initiated by
the Pacific Earthquake Engineering Research
center (PEER) [21], has published five new models
through a comprehensive and highly interactive
research program, for shallow crustal earthquakesin
theWestern North of Americato predict Peak Ground
Accderation (PGA), Peak Ground Ve ocity (PGV),
and 5% damped response spectra for periods rang-
ing between 0.01 to 10 seconds. These relationships
are Abrahamson and Silva [22], Boore and Atkinson
[23], Campbdl and Bozorgnia[24], Chiou and Youngs
[25], and Idriss [26]. It should be noted that Idriss
[26] modd only includes rock sites (assumed to be
sites with V,, 450 m/s), in which this significant
difference isolates the modd from the other modds
because it can only be applied to rock sites. There-
fore, this modd is excluded in this paper for further
investigations. These models consist of different
parameters, e.g. terms of influence the nonlinear
site, sediment depth, hanging wall effects, source
parameters, and etc. The NGA database used to
develop theNGA GMPEsisrdativey largei.e. 3551
recordings from 173 earthquakes (A few Iranian
events are also included in this database).

Some recent papers have presented a number of
suggestions as criteria that can be used to select
GMPEs|[27]. Four significant pointsare particularly
considered in this study;

1 The modds superseded by a more recent publi-
cation are excluded.
1 The models which lack either in non-linear
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magnitude dependence or magnitude-dependent
decay with distance are avoided [27-28]. This
issue should be met just by empirical models, not
by physical modd.

1 The modes which use inappropriate definitions
for explanatory variables, such as M, or Repi, or
models with the site effects without consideration
of Vg, are excluded.

1 Thecoefficients of the model werenot determined
by a method that accounts for inter-event and
intra-event components of variability. In other
words, models must be derived using one- or
two-stage maximum likelihood approaches or the
random effects approach.

Here, the selected ground motion models are
briefly described as follows:

5.1. Saffari et al. [15] (Setal12)

Themodd hasbeen developed for predicting PGA,
PGV, and acceleration response spectra with 5%
damping based on asubset of Iran database (78 earth-
guakes and 351 records). This model includes
Moment magnitude, distance measure, fault mecha-
nism, site class, and zone as seismic parameters.

5.2. Zafarani et al. [29] (Zetal12)

Zetal1? is a physical GMPE rdationship which
was developed by using the Specific Barrier Modé
(SBM). An Iranian data set consists of 171 strong-
motion records from 24 earthquakes for Zagros
region was used to obtain this modd.

5.3. Ghodrati € al. [30] (Getal07)

Getal07 has been developed for predicting PGA,
PGV, and Effective Peak Acceleration (EPA) for
Zagros, Alborz, and Central-Iran seismotectonic
regions. The data set includes 89 earthquakes and
307 records. In this modd, surface wave magnitude
(Ms) as moment measure has been used.

According to the third criterion recommended by
Bommer et a. [27], this modd should be excluded,
nonethelessit iskept in this stage of the study to show
the inconsistency of this model in comparison with
the other models.

5.4. Akkar and Bommer [31] (AB10)

Thismode can be used for theprediction of PGA,
PGV, and response spectral ordinates in the Europe,
the Middle East and the Mediterranean. They used a
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subset of 532 strong-motion records from 131 events
in these regions.

5.5. Akkar and Cagnan [32] (AC10)

Thismode is proposed for predicting PGA, PGV,
and acceleration response spectra with 5% damping
for periods ranging from 0.03 to 2 seconds by means
of Turkish ground-motion database.

5.6. Ambraseys et al. [33] (Aetal05)

This mode presents equations for the estimation
of PGA and pseudo-spectral acceleration caused by
shallow crustal earthquakes by means of a set of 595
strong-motion records recorded in Europe and the
Middle East.

5.7. Ozbey et al. [34] (Ozetal04)

Thebaseisasubset of 195 recordsfrom 17 earth-
quakes used in the regression analyses. This mode
predicts PGA and acceleration response spectra
with 5% damping for periods ranging from 0.1 to 4
seconds.

5.8. Kalkan and Gulkan [35] (KG04)

The corresponding authors used a dataset cre-
ated from a set of 112 strong ground motion records
from 57 earthquakes that occurred between 1976
and 2003 to develop horizontal GM PE relationships
for Turkey.

5.9. Bindi et al. [36] (Bindi10)

The data set was composed of 561 three-compo-
nent waveformsfrom 107 earthquake events occurred
in Italy between 1972 and 2007 and recorded by
206 stations at distances up to 100 km. This mode
predicts PGA, PGV, and acceleration response
spectra with 5% damping for periods ranging from
0.3 to 2 seconds.

5.10. Campbell and Bozorgnia [24] (CB08)

CBO08 has been obtained based on a subset of the
PEER NGA database (1661 records from 64 events)
for predicting PGA, PGV, and acceeration response
spectra with 5% damping according for periods
ranging between 0.01 to 10 seconds. The CBO08
includes the effects of magnitude saturation, magni-
tude-dependent GMPE, style of faulting, rupture
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depth, hanging-wall geometry, linear and nonlinear
site response, 3-D basin response, and inter-event
and intra-event variability.

5.11. Boore and Atkinson [23] (BAOS)

This model is one of the NGA project models
that were obtained based on 1574 records from 58
events for predicting PGA, PGV, and accderation
response spectra with 5% damping for periods
ranging from O to 10 seconds. The main predictor
parameters in BAO8 are moment magnitude, closest
horizontal distance to the surface projection of the
fault plane (RJB), and the averaged shear-wave
velocity from the surface to 30 m V.

5.12. Chiou and Youngs [25] (CYO08)

This modd was driven by using the PEER NGA
database of 1950 records from 125 events. CY08
predicts PGA, PGV, and acceleration response spec-
tra with 5% damping for periods ranging between
0.01 and 10 seconds. The model incorporates the
effect of seismic source scaling, path scaling, and
Site effects.

5.13. Abrahamson and Silva [22] (AS08)

AS08 has been obtained to predict PGA, PGV,
and acce eration response spectra with 5% damping
for periods ranging between 0.01 and 10 seconds.
The corresponding authors used 2754 strong-motion
records from 135 earthquake events of the PEER
NGA database. This model obtained from site
response mode, hanging-wall mode, depth-to-top of
rupture mode!, largedistancemodel, soil depth modd,
and constant displacement model.

The nominated GMPE models are summarized in
Table (4) including the valid range of magnitude
and distance. In this study, theresult of Kaklamanos
technical note has been used in order to reduce
uncertainties and convert all input variables of
GMPE modéls into a unique definition [37]. In addi-
tion, all GMPE modds use the moment magnitude
scale except Getal07 mode in which the transition
equations for magnitude measures have been used
[38].

6. Residuals Analysis

The residuals analysis is the main technique to
choose an appropriate mode among the numerous
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Table 4. Nominated ground motion prediction equations.

No GMPE Abbreviation Category Dominant Region Distance (km) Magnitude
1 Saffari et al. [15] Setal2 1 Iran 15-135 5.0-7.3
2 Zafarani et al. [29] Zetall2 1 Iran 1-200 44-715
3 Ghodrati et al. [30] Getal07 1 Iran 5-150 45-75
4 Akkar and Bommer [31] AB10 2 Europe, Middle east 0-100 5.0-7.6
5 Akkar and Cagnan [32] AC10 2 Turkey 0-200 35-7.6
6 Ambraseys et al. [33] Aetal05 2 Europe, Middle east 0-100 5.0-7.5
7 Ozbey et al. [34] Ozetal04 2 Turkey 5-300 5.0-74
8 Kalkan and Gulkan [35] KG04 2 Turkey 1-250 4.0-75
9 Bindi et al. [36] Bindi10 2 Italy 0-100 4.0-6.9

10 Campbel and Bozorgnia [24] CB08 3 California 0-200 4.0-75

11 Boor and Atkinson [23] BAO8 3 California 0-200 5.0-8.0

12 Chiou and Y oungs[25] CY08 3 California 0-200 4.0-8.0

13 Abrahamson and Silva[22] AS08 3 California 0-200 5.0-85

ground motion prediction equations. The residual is
defined by Eq. (4) as the subtraction of the natural
logarithm of the predicted value from the natural
logarithm of the observed value in which each data
point has one residual.

(4)

)
rj =LnY; - LnYj :hi +eij

where LnYiJ. is the observed value and LnYiJ. is the
predicted value of | record of i event. h, and e,
are, respectively, the inter-event residual and the
intra-event residual, Egs. (5) and (6).

: 1N

[inter] — — o
fi =h; __Ni ja:lrij )
rij[intra] =g; =r;- h (6)

6.1. Residuals Distribution

The perfect form of the obtained residuals in the
previous section has a normal distribution with zero
mean and unit variance (m= 0, s = 1). Thefitness of
the resulted residuals to the ideal form indicates the
level of compatibility of the applied ground motion
model with the recorded data. There are various
statistical tests in order to evaluate the goodness of
fitness such as z-test and Lilliefors test [39]. The
null hypothesis in the z-test is that the mean of the
normalized residual set is zero when the residuals
are assumed to have a normal distribution with unit
variance [39]. The null hypothesis in the Lilliefors-
test is that data come from a normal distribution
when the mean and the variance of the distribution
are unidentified [39].
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The resulted p-values of these two hypothesis
testsindicate acceptable or unacceptable null hypoth-
esis with respect to a given data. A small p-value
means significant difference between observed and
predicted amounts of models and a large p-value
referred to more acceptable model [40]. Table (5)
shows the results of the mentioned tests in the
current study. In this table, the logical valueH = 1
bdongs to the reection of the null hypothesis at
the 5% significancelevd inwhich H = O isreversed.

As seen in Table (5), al of the candidate modds
have normal distribution based on the Lilliefors test;
however, the null hypothesis can be rejected for
the majority of the candidate models based on the
z-test. It worth emphasizing that the mentioned
traditional hypothesis tests only check for one

Table 5. Results of the hypothesis tests.

Model Lilliefors-Test z-Test

P-value H P-value H
*GP Model 0.4957 0 0.8892 0
Setal 12 0.5774 0 0.9961 0
Zetall1l 0.6977 0 0.0447 1
Getal07 0.8269 0 0.0547 0
AB10 0.3575 0 8.47E-7 1
AC10 0.2815 0 3.68E-50 1
Aetal05 0.8630 0 4.85E-5 1
Ozetal 04 0.4968 0 2.6e-27 1
KG04 0.2574 0 0.8471 0
Bindi10 0.7171 0 7.62E-5 1
CB08 0.9553 0 0.3862 0
BAO8 0.9153 0 2.94E-4 1
CY08 0.2619 0 3.27E-5 1
AS08 0.8010 0 0.0323 1

*GP Modd: the obtained model by GP and optimized by GA
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hypothesis, i.e. normal distribution or zero mean;
hence, they are not perfect tools for evaluating the
nominated GMPEs. That is, additional techniques
have been employed in order to assess the ground
motion models as discussed in the following
sections.

6.2. Error Terms, Coefficient of Determination,
Information Theoretic Method and Coeffi-
cient of Efficiency

The error terms are the criteria for assessing the
accuracy of the chosen GMPEs. In this study, two
error criteria, i.e. Root Mean Squared Error (RM SE)
and Mean Absolute Error (MAE) as written, respec-
tively, in Egs. (7) and (8) are used to quantify how
accurate the modds predict ground motion param-
eters.

a (Xobs - Xpre)2
N
a Xobs' Xpre
MAE =N N (8)

In statistics, the coefficient of determination
(denoted by R?) is a criterion to show how well a
model predicts outcomes. This measure is most
often seen as a number between zero and unity. A
large value of the coefficient of determination
indicates the modd perfectly fits the data. Eq. (9)
represents the mathematical form of the coefficient
of determination which is used in the current study.

éN (Xobs)2 - éN (Xobs h Xpre)2

& (Xops)? ©)
N

R*=

In Egs. (7), to Eq. (9) X, and X e @€, respec-
tively, the observed and the predicted values and
N is the total number of records in the data set.

The information theoretic method is a modern
powerful technique for evaluating modds [8]. The
quantitative assessment between different candidate
modelsrequires ameaningful distance measure based
on an information theoretic framework; this measure
is given by the Kullback-Leibler distance [41]. The
Kullback-Leibler distance between two probabilistic
models g, and g, is presented as written in Eq.
(10):
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D(f.9,)- D(f.g,) =
E¢[log, ()]~ E[log,(g,)]-
(E¢[log,(f)]- E¢[log,(gy)]) =
E[log, ()]~ E[log,(g,)]-
E¢[log, ()] +E¢[log,(g,)] =
E¢[log,(90)]+ E¢ [l0g,(9,)]”

» (109, (L(94) - 10g,(L(55))

(10)

where E, is the expected value taken with respect to
f. Here, for a base 2 logarithm, its unit is bit. As a
conseguence, by means of the average sample log
likelihood definition, the LLH criterion is defined,
Eq. (12).
1N
LLH :=- Ni'ogZ(g(m) (12)
Thelow LLH value shows the good appropriate-
ness of the candidate modds.
TheNash-Sutcliffeefficiency coefficient (denoted
by E) is employed to quantify the predicted values
with the observed values [42]. This coefficient is
determined in logarithmic space via Eq. (12):

m n A~ 2
a a (Lny; - LnY;)
E=[1- 2= —1]" 100% 12)
& & (LnY; - LnY)?
j=li=1

where m is the number of periods under consider-
ation (inthis study, m=1), nisthe number of records
inthedatabase, LnY; arethe observed values, LnY;
are the predicted values, and LnVi,- is the mean of
LnY; . This criterion can be varied between and
100%. The higher indicator represents better
conformity between the predicted values and the
observed values. An efficiency of 100% (E = 1)
corresponds to a perfect match of predicted models
to the observed data, whereas an efficiency of zero
(E = 0) indicates that the mode predictions are as
accurate as the mean of the observed data, while
the negative E values show that the arithmetic mean
of the observed values has a greater prediction
accuracy than the model itsdf [42]. As the Nash-
Sutcliffe modd is more sensitive to the additive and
the multiplicative difference between the observa-
tions and the predictions than the other goodness-
of-fit statics, the researchers find out this criterion
as a better indicator [43]. Table (6) includes the
result of the mentioned criteria.
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It should be mentioned that the Nash-Sutcliffe
efficiency can also be used to quantitatively describe
the accuracy of predicting modds and measure the
dispersion about the one-to-one line. Figure (3)
displays the comparison of the observed and predicted
PGA by GP model and AC10 model within the
sdlected database and also confirms the results of
coefficient of efficiency shown in Table (6).
Asitisillustrated in Table (6), GP modd has the
lowest LLH value among the other models; hence,
the purpose of the defined fitness function for GP
and GA is achieved according to this criterion. After
GP modd, Zetal12 model, which is based on the
Iranian database, has lowest LLH value. According
to the coefficient of efficiency criterion, GP mode

and Zetal12 have the best results among the other
candidate models, whereas AC10 and Ozetal 05 have
efficiency less than zero. GP modd and Zetal12 are
the best models among the other models with the
lowest error values and the highest coefficient of
determination. In addition, AB10, AC10, Aetal05,
Ozeal04, and Bindi10 modes, which are correspond-
ing to Europe and Middle East regions, have the
lowest coefficient of determination and the highest
error values. Therefore, the authors decided to
exclude these two modds in this stage of research.
Furthermore, NGA models do not show enough
reasonable results than the other models in which it
seems they are not superior models for the study
region.

Table 6. Result of Error terms (RMSE, MAE), LLH, E, and R,

M odel LLH R? E RMSE MAE
rij ri[inter] rij[intra] rij ri[inter] rij[intra]
GP Modd 1.9368 0.9454 33.4252 0.9264 0.5643 0.7858 0.7470 0.4269 0.6272
Setal 12 2.2913 0.9399 22.9985 0.9598 0.6383 0.7704 0.7787 0.4891 0.6085
Zetal12 1.9712 0.9460 34.1801 0.9212 0.5750 0.7651 0.7385 0.4135 0.6049
Getal07 2.9947 0.9393 24.4972 0.9742 0.6774 0.7771 0.7855 0.5424 0.6310
AB10 2.5466 0.9341 22.9090 1.0320 0.6920 0.7949 0.8524 0.5133 0.6388
AC10 3.2676 0.8651 -64.3621 1.4556 1.2127 0.7918 1.2117 1.1202 0.6251
Aetal05 24133 0.9364 25.7504 1.0115 0.6697 0.7907 0.8234 0.4865 0.6359
Ozetal 05 3.6427 0.9032 -17.8296 1.2324 0.9556 0.7841 0.9839 0.8423 0.61152
KG04 2.2981 0.9444 32.3028 0.9342 0.6179 0.7716 0.7568 0.4760 0.6127
Bindi10 2.2288 0.9310 19.1787 1.0522 0.6815 0.8675 0.8593 0.4886 0.6787
CB08 2.7452 0.9433 30.9763 0.9433 0.6211 0.7710 0.7588 0.4607 0.6167
BAO8 2.6496 0.9396 28.8792 0.9737 0.7443 0.6953 0.7660 0.5649 0.5382
CY08 2.5322 0.9378 24.5607 0.9889 0.6403 0.7816 0.8164 0.4568 0.6183
AS08 2.2605 0.9425 29.9721 0.9501 0.6120 0.7771 0.7708 0.4301 0.6199
100 - vé 100 - 7
—— Least Square Line Regression // —— Least Square Line Regression //
——-1-1 Line ——-1-1 Line i

Predicted PGA by AC10 Model (g)

1073

102 1071 100

Observed PGA (g)

Predicted PGA by AC10 Model (g)

10-3 L L
- 1071 100

Observed PGA (g)

Figure 3. Comparison of the observed versus predicted PGA using the GP model and AC10 relationship, along with the least-
squares regression line and the ideal one-to-one line.
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6.3. Residuals Bias

One of the important requirements for choosing
an appropriate GMPE mode is unbiased residuals
toward earthquake parameters [44]. In this study, a
hypothetical test is applied by means of the general-
ized linear modd regression in order to evaluate the
inherent bias. The null hypothesis is that the slope
and the Y-intercept of the fitted linear line to the
residuals toward different seismic parameters is
zero. Two P-values (P, and P,) are achieved by this
hypothetical test in which the highest P-value
indicates the lowest bias in the residuals. For the

entire candidate models the residuals, Eq. (4), the
inter-event residuals, Eqg. (5), and the intra-event
residuals, Eq. (6), are calculated based on the avail-
able Iranian strong-motion data, in order to examine
the bias for the candidate modd predictions. Tables
(7a) and (7b) show the results of the hypothetical
test to examine the bias.

As seen in Tables (7a) and (7b), the mean value
of the residuals is calculated in order to show if
the model prediction is over-estimated or under-
estimated. As a consequence, AC10, Aetal05,
Ozetal04, BA08, CY08, AB10, and Bindi10 are

Table 7a. Result of residuals biases.

P-values
M odel RMe;ZTngfs My VS. I RVs. 1 Vsa0 VS. T
2 P.’ Py Pa Py Pa
GP mode -0.0104 0.7455 0.7344 0.5559 0.5594 0.9574 0.9878
Setal12 3.8E-04 0.0062 0.0065 0.0013 0.0036 0.8332 0.8477
Zetal12 0.1500 0.7744 0.9690 0.6143 0.1236 0.5498 0.1408
Getal07 -0.1452 0.0070 0.0038 0.1622 0.0304 0.0226 0.2263
AB10 0.3881 0.4316 0.8026 0.1744 0.3388 0.2801 0.0015
AC10 1.1131 0.5009 0.0155 0.6622 1.5E-12 0.2921 2.9e-08
Aetal05 0.3202 0.2048 0.4061 0.0646 0.8866 0.2647 0.0047
Ozetal04 0.8089 0.0309 6.3e-04 0.0588 2.1e-12 0.9052 2.9e-06
KG04 0.0144 0.0094 0.0105 0.7872 0.7365 0.7888 0.8769
Bindi10 0.3128 0.2950 0.1478 0.8660 0.1340 0.8627 0.1184
CBO08 0.0648 0.0251 0.0337 0.6090 0.9829 0.6234 0.9569
BAO8 0.2871 0.3799 0.6594 0.8932 0.0718 0.9298 0.1952
CY08 0.3114 0.0941 0.2403 0.0594 0.5370 0.7584 0.1223
AS08 0.0016 0.0647 0.1136 0.5566 05213 0.2666 0.972
*P,: P-value for the slope of fitted line by regression.
**P_: P-value for the Y-intercept of fitted line by regression.
Table 7b. Result of residuals biases.
P-values
M odel é\/l g;ijl:,gjfs My, vs. riimel Ruvs, ri" Vsao vs. it "™
Py Pa Py Pa Py Pa

GP Modd -0.0104 0.6613 0.6019 05735 0.6273 0.3669 0.4144

Setal12 3.8E-04 0.0267 0.0247 0.2324 0.2815 0.3007 0.3507

Zetall2 0.1500 0.6052 0.6866 0.5397 0.5968 0.6477 0.6794

Getal07 -0.1452 0.0357 0.0198 0.6396 0.6804 0.2960 0.3451

AB10 0.3881 0.2776 0.4895 0.6783 0.7075 0.9861 0.9875

AC10 11131 0.7841 0.1339 0.6371 0.6840 0.0559 0.0835

Aetal05 0.3202 0.2200 0.3409 0.4526 0.4974 0.8133 0.8322

Ozetal04 0.8089 0.1901 0.0301 0.4188 0.4855 0.4001 0.4465

KG04 0.0144 0.0428 0.0389 0.1488 0.2127 0.2089 0.2555

Bindi10 0.3128 0.6279 0.4485 0.7008 0.7279 0.2885 0.3406

CB08 0.0648 0.0535 0.0547 0.4862 0.5479 0.1797 0.2247

BAO8 0.2871 0.3571 0.4770 0.6895 0.7291 0.4602 0.4903

CY08 0.3114 0.1312 0.2280 0.4407 0.5063 0.1394 0.1788

AS08 0.0016 0.1359 0.1711 0.8290 0.8522 0.0499 0.0758
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remarkably under-estimated models. This table
again implies that GP model gives more unbiased
estimates of LNPGA for the considered database.

6.4. Stability of Ground Motion Prediction Equa-
tions [45]

Each GMPE is aobviously obtained based on a
specific ground motion database. A small change in
the chosen ground motion database should not affect
significantly on the GMPE outputs. In other words, if
a GMPE is strongly sensitive to a small change of
ground motion database, then, the predicted values
may not be so reliable. To quantify this phenomenon,
a sensitivity of the GMPE models to their own
databases is evaluated in this section as the following

steps:

process.
Step 1, 2 and 3 are repeated for N = 70 to
N = 'maximum number of records within data
base, with the increment of 10.

The obtained indicators that were calculated in
Step 2 can be shown versus N e.g. Figure (4) in
the case of GP modd.

The process of choosing the optimized K factor
is summarized as the following steps and theresult is
shown in Figure (5):

1 Sdect an initial assumption for the number of
subsets (GMRs or events), say K = 50, with a
constant number of GMRs, say N = 1000, in
this study.

The p-values corresponding to the residuals,
versus different types of seismic input param-

1. For each GMPE, a reduced number of ground eters, are calculated based on the chosen
motion records, say N, is selected based on subset, which was defined in Step 1 (e.g. intra-
uniformly random selection. event residuals versus RRUP).

2. The P-values based on Magnitude, Distance and 1 Themedian p-valueis calculated and stored.
Site condition as well as LLH, R-squared and 1 Steps 1, 2 and 3 are repeated for T times to
RMSE are calculated based on the reduced avoid any bias from the random selection
database defined in Step 1. process, say T =50, in this study.

3. Steps 1 and 2 arerepeated for optimized K times 1 Theinterval between the maximum and mini-
to avoid any bias from the random selection mum of the stored median p-valuesin step 3 is

1.0 1.0 e S S RS R R
: ] |
%T"\ 08 ..... . ;;} 08 - . i .. ?‘* 08 R I BE T5 TR
§ 04} 8. . g 04t - § g . [ l .. 9.0 '. .
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T 02p gt g .O & o2 1§88 NP3 O & 020 .. TR T
Jickiel jegittde et
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Figure 4. Re-sampling of the GP model for 400 uniformly random selected databases, towards moment magnitude, distance

measure, shear-wave velocity, LLH, R?, and RMSE.

JSEE / Vol. 15, No. 3 & 4, 2013

163



Sahar Rahpeyma, Alireza Azarbakht, and Mehdi Mousavi

0-25 ' ' ' ' ' ' ' calculated.
1 Steps 1 to 5 are repeated by a constant incre-
ment (e.g. 50) in K parameter until theinterval
in step 5 is less than 5%.
1 The obtained intervals calculated in Step 5,
are shown versus K factor.
6. The average of each indicator, in Step 2 for a
specific N samples, can be calculated as a final
. . . . . . . . indicator. It makes possible to show the final
50 100 150 200 250 300 350 400 indicator in one plot for all GMPES as seen in
Number of Random Databases Figure (6) in the case of Moment magnitude,
Distance, Site condition, LLH, R-squared and

0.2f 1

0.15¢

0.1f

0.05

Interval Between Minimum and
Maximum of 50 Mean of P-Values

Figure 5. The presses of choosing the number of random data

bases for re-sampling analysis. RMSE.
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Figure 6. Re-sampling of the candidate models for 400 uniformly random selected databases, towards moment magnitude, distance
measure, and shear-wave velocity, LLH, R%, and RMSE.
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It is worth mentioning that an unbiased mode
should move ascending, as seen in Figure (6), while
the sample size is increasing. Except GP mode and
Zetal12 mode, other modds have descending trend
towards moment magnitude as shown in Figure (6).
Additionally, as seen in Figure (6), except Getal 07,
AB10, CY08, and Setal12 in the case of Pb-values
versus distance measure and CB08, AB10, and
Getal07 models in the case of Pb-values versus
shear-wave velocity measure, other models are more
stable. GP modd has the lowest LLH value. GP
modd and Zetal12 have the lowest RMSE values
and the highest R-squared values. As a conseguence,
the re-sampling results confirm that only the
achieved modd in this study, GP modd is superior
and it is more stable with ascending behaviour
versus all the seismic variables when compared with
the other moddis.

7. Conclusion

In this study, the new predictive PGA modd has
been abtained by means of the new fitness function
based on LLH criteria and re-sampling analysis, for
Iranian seismic plateau database. Furthermore, in
order to assess the obtained modd, the traditional
and modern approaches have been employed to
evaluate the ground motion prediction equations,
which are nominated to be used for Iranian database.
Based on the traditional hypothesis test, such as
Z-test and Lilliefors test, all the candidate models
have normal distribution; however, the mgjority of
the models do not have zero mean residuals. Other
results from different statistical and mathematical
methods such as error terms (RMSE & MAE),
coefficient of determination (R-squared), the infor-
mation-theoretical method (LLH) and coefficient of
efficiency (E) indicate that GP moded has the best
performance in comparison to the other models.
Another important test, which isapplied in this paper,
is checking for no bias on residuals. GP modd is not
significantly biased between the other models in
this case. Finally, the results based on the new
proposed approach in this study for evaluating stabil-
ity of modds, by re-sampling analysis, indicate that
GP modd is more stable in comparison to the other
selected modds.
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Appendix TableA.
Table A. The records that is used in this study

N.O Event Station Name Record ID Latitude (deg) Longitude(deg) Epi-Distance(km) Vs30 (m/s)
1 Bajestan 1086.00 3452 58.18 166.00 710.00
2 Boshroyeh 1083-1 33.86 57.43 74.00 564.00
3 1078096 Deyhook 1082-1 33.29 57.50 19.00 843.00
4 Tabas 1084-1 3358 56.92 58.00 645.00
5 Gonabad 1142-1 3435 58.68 94.00 529.00
6 Ghaen 1139.00 373 59.22 53.00 889.00
7 Khezri 1140.00 34.02 58.81 76.00 701.00
8 197971127 Bajestan 11342 3452 58.18 143.00 710.00
9 Bifjand 1137.00 3287 59.21 137.00 787.00

10 Kakhk 1135.00 34.14 58.66 91.00 1961.00
1 Sadeh 11361 B3 59.04 90.00 1180.00
12 Abbar 1362-1 36.93 48.9 32.00 691.00
13 199006720 Ghazvin 13531 36.26 50.00 98.00 456.00
14 Babandar 1498.00 28.98 53.22 55.00 885.00
15 Farashband 1497.00 28.87 52.07 63.00 630.00
16 Firuzabad 14932 28.84 5257 29.00 894.00
17 1994/06/20 Kavar 1491.00 20.20 52.69 18.00 753.00
18 Maymand 14902 28.87 52.75 24.00 881.00
19 Zanjiran 1502-9 20.07 52.62 10.00 936.00
20 Zaa 1492-16 20.00 52.85 19.00 720.00
21 1997/02/04 Marvertappeh 1674.00 37.90 55.96 136.00 538.00
2 Germi 1702.00 39.05 48.06 109.00 712.00
23 1997/02/28 Kariq 18332 EIA 48.06 35.00 589.00
2 Namin 1724.00 3842 48.48 71.00 1236.00
25 Marak 1750-2 2.9 59.43 105.00 872.00
26 Mussaviyeh 1770.00 33.29 58.91 105.00 848.00
27 Sangan 1753.00 34.40 60.25 80.00 941.00
28 1997/05/10 Khezri 1740.00 34.02 58.81 188.00 701.00
29 Feyzabad 1741.00 35.01 58.78 162.00 561.00
30 Gonabad 1742.00 3437 58.68 120.00 683.00
3 Mud 1751.00 271 59.52 127.00 961.00
2 Abarag 1864-1 28.10 57.23 90.00 641.00
33 1998/0314 Bagein 1866.00 30.19 56.82 76.00 516.00
3 Noorabad 2251.00 34.07 47.97 36.00 758.00
35 1999/08/21 Boroujerd 21831 33.89 48.75 69.00 579.00
36 Aleshtar 2196-2 33.86 48.25 47.00 621.00
37 Ghaemiyeh 21263 20.85 51.59 48.00 617.00
38 Kazeroon 21212 20.62 5167 28.00 35200
39 1999/05/06 Balaadeh 21312 20.83 52.40 29.00 1380.00
40 Gooyom 21232 20.83 52.40 56.00 598.00
a1 Khan Zeynioun 2130-1 20.67 52.15 26.00 773.00
2 Balaaden 21313 20.29 51.94 18.00 1380.00
43 1999/05/06 Gooyom 21233 20.83 52.40 64.00 598.00
44 Khan Zeynioun 2130-2 29.67 52.15 36.00 773.00
45 Kazeroon 2216-1 29.62 51.67 36.00 352.00
46 Romghan 2217.00 20.37 52.16 34.00 1362.00
a7 19991081 Ghaemiyeh 22183 20.85 5159 60.00 617.00
48 Balaaden 2219-12 20.29 51.94 19.00 1380.00
49 Armanijan 27062 34.61 4735 25.00 390.00
50 Aran 27072 3441 479 58.00 175.00
51 Bisioon 27082 34.38 47.43 35.00 750.00
5 200204724 Sahneh 27102 34.47 47.68 39.00 375.00
53 Sonqor 27112 34.78 47.60 37.00 1477.00
54 Lenj Ab 27472 34.87 4728 40.00 375.00
55 Abegarm 27481 35.76 49.8 18.00 199.00
56 Bahar 2750.00 34.89 48.44 108.00 913.00
57 Bakandi 2787-1 36.40 49.57 93.00 308.00
58 Buinzahra 2759.00 35.77 50.06 79.00 255.00
59 Darssjin 2769-2 36.02 49.24 46.00 636.00
60 Deh-Jlal 2768.00 36.32 48.70 88.00 748.00
g 20020622 Ghohrud 2778.00 35.47 48.06 105.00 414.00
62 Goltappen 2777.00 3522 48.20 102.00 1077.00
63 Kabodarahang 2754-1 35.01 48.72 65.00 613.00
64 Razan 2756-1 35.39 49.03 33.00 314.00
65 Seei-Ghdle 2772.00 36.31 49.07 71.00 642.00
66 Shirinsu 278100 35.49 48.45 70.00 813.00
67 Armanijan 2033-3 3461 a3 24.00 390.00
68 Aran 2034.00 3441 7.9 48.00 175.00
69 Bistoon 2035.00 34.38 47.43 28.00 750.00
70 20021224 Sahneh 2036-1 34.47 47.68 29.00 375.00
7 Sonqor 2037-1 34.78 47.60 34.00 1477.00
7 Lenj Ab 2099-1 34.87 47.28 44.00 375.00
73 Hajiabad-3 3040-1 28.35 54.42 27.00 561.00
74 Jouyom 3041-1 28.26 53.98 21.00 1244.00
75 2008/07710 Zahedshahr 3042-1 28.74 53.80 60.00 390.00
76 Jahrom 3045-1 28.50 53.55 64.00 375.00
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Table A. Continue.

N.O Event Station Name Record ID Latitude (deg) Longitude(deg) Epi-Distance(km) Vs30 (m/s)
77 Hajiabad-3 30403 28.35 54.42 38.00 561.00
78 Jouyom 3041-2 28.26 53.98 18.00 1244.00
79 2008007110 Zahedshahr 3042-2 28.74 53.81 63.00 390.00
80 Jahrom 3045-2 28.50 53.55 61.00 375.00
81 Fahraj 3067.00 28.95 58.89 87.00 280.00
82 2003/08/21 Nosratabad 3069.00 20.86 59.98 97.00 1154.00
83 Rygan 3070.00 28.65 59.01 85.00 437.00
84 Hajiabad-3 31342 28.35 54.42 44.00 561.00
85 2003/11/28 Jouyom 3135.00 28.26 53.98 27.00 1244.00
86 Doobaran 31365 28.41 54.18 30.00 1363.00
87 Bam 31682 20.00 58.35 4.00 499.00
88 Jroft 31702 28.67 57.74 74.00 343.00
89 ooiioms Mohamadabad 3162-1 28.91 57.89 49.00 507.00
90 Anduhjerd 3164.00 30.23 57.75 143.00 566.00
o1 Golbaf 31552 20.89 57.73 111.00 365.00
9 Joshan 3156.00 30.12 57.61 140.00 776.00
93 Hasan Keyf 3333.00 36.50 51.15 45.00 339.00
94 Moadlemkelayeh  3367.00 36.45 50.47 100.00 490.00
95 2004/05/28 Noshahr 3368-1 36.65 51.49 43.00 165.00
9 Nur 3360-1 3657 52.01 53.00 178.00
97 Talegn 3318.00 36.18 50.76 72.00 462.00
98 Aliabad 3542.00 36.90 54.85 52.00 562.00
99 Bandar-eGaz 35572 36.76 53.95 63.00 347.00

100 Dibaj 3590.00 36.43 54.23 87.00 526.00

101 Gomishan 3546.00 37.07 54.08 47.00 322.00

102 200410007  Gonbad-eKavoos  3544.00 37.04 55.16 69.00 402.00

103 Gorgan 3545.00 36.84 54.39 46.00 291.00

104 Inche Broun 3560-1 37.46 54.72 51.00 283.00

105 Minoodasht 3639-1 37.23 55.37 86.00 449.00

106 Ramyan 355100 37.02 55.14 68.00 827.00

107 AqQda 3608.00 37.01 54.46 59.00 341.00

108 Aliabad 3612.00 36.90 54.85 75.00 562.00

109 Bandar-e-gaz 3609.00 36.76 53.95 98.00 347.00

110 Gomishan 3607.00 37.07 54.08 67.00 322.00

111 200500110 Gorgan 3623.00 36.84 54.39 77.00 291.00

112 Inche Broun 3618.00 37.46 54.72 36.00 283.00

113 Minoodasht 36395 37.23 55.37 85.00 449.00

114 Ramyan 36212 37.02 55.14 80.00 827.00

115 Chatrud 3660-1 30.61 56.91 27.00 852.00

116 Davaran 3702.00 30.58 56.19 57.00 752.00

17 oosioos Deh-e-Loulo 3679.00 30.53 57.29 61.00 617.00

118 Horjand 3688.00 30.68 57.15 42.00 999.00

119 Ravar 366100 31.26 56.79 55.00 853.00

120 Zarand 3671-1 30.81 56.58 19.00 226.00

121 Bandar-eAbasl  3912.00 27.19 56.29 62.00 337.00

122 BandareAba  3917.00 27.19 56.30 62.00 375.00

123 Bandar-eKhamir  3913.00 26.95 55.58 39.00 679.00

124 2005/11/27 Kahoorestan 3910.00 2722 55.56 61.00 807.00

125 Qeshm 3909.00 26.96 56.28 45.00 757.00

126 Fin 3916.00 27.63 55.90 96.00 681.00

127 Swa 3915-1 26.78 56.07 21.00 1334.00

128 Chalan Choolan 40275 33.66 48.91 24.00 428.00

129 Boroujerd 4023-2 33.89 48.75 34.00 579.00

130 Dorood 4022-1 33.49 49.06 37.00 771.00

1L 006035 Khoramabadl 4019-1 33.49 48.36 47.00 375.00

132 Chaghalvandi 40182 33.66 4855 29.00 616.00

133 Shool Abad 4055-2 33.18 49.19 67.00 1084.00

134 Toosk-eAbeSar 40352 377 4857 31.00 891.00

135 Darreh-Asbar 4052-2 33.45 49.06 40.00 935.00
136 Chaghalvandi 40183 33.66 4855 35.00 616.00
137 Khoram Abad 4019-2 33.49 48.36 54.00 375.00
138 Dorood 4022-2 33.49 49.06 23.00 771.00
139 Aleshtar 4025.00 33.87 48.26 67.00 621.00
140 2006/03/31  Chalan Choolan 4027-8 33.66 48.91 13.00 428.00
141 Darreh-Asbar 4052-3 33.45 49.06 67.00 935.00
142 Noor Abad 4024.00 34.07 47.97 101.00 758.00
143 Shool Abad 4055-3 33.18 49.19 56.00 1084.00
144 Toosk-eAbeSar  4035-3 377 4857 38.00 891.00
145 Khoram Abad 4136.00 33.49 48.36 52.00 375.00
146 Shool Abad 4055-4 33.18 49.19 78.00 1084.00
W7 ey ToOSkeAbeSa 40356 377 4857 31.00 891.00
148 Dorood 4032.00 33.49 49.06 47.00 771.00
149 Boroujerd 4034.00 33.89 4875 32.00 579.00
150 Chaghalvandi 4044.00 33.66 4855 33.00 616.00
151 Tomban 4147-13 26.77 55.86 13.00 778.00
152 osiogps  BANda-eKhamir 415200 26.95 55.58 33.00 679.00
153 Qesim 4128.00 26.96 56.28 52.00 757.00
154 Bandar-eAba?  4144.00 27.19 56.30 68.00 375.00
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Table A. Continue.

N.O Event Station Name Record ID Latitude (deg) Longitude(deg) Epi-Distance(km) Vs30 (m/s)
155 Doobaran 4573.00 28.41 54.18 33.00 1363.00
156 2008/05/05 Jouyom 4574.00 28.26 53.98 14.00 1244.00
157 Zahedshahr 4575.00 28.74 53.81 65.00 390.00
158 Bandar-e-Khamir 4672.00 26.95 55.58 38.00 679.00
159 Tomban 4686-3 26.77 55.86 23.00 778.00
160 2008/09/10 Suza 4678-1 26.78 56.07 40.00 1334.00
161 Tabl 4675-1 26.76 55.73 17.00 931.00
162 Kahoorestan 4676.00 27.22 55.56 66.00 807.00
163 Tabl 4675-2 26.76 55.73 22.00 931.00
164 2008/09/11 Suza 4678-5 26.78 56.07 47.00 1334.00
165 Tomban 4686-19 26.77 55.86 30.00 778.00
166 Bandar-e-Abasl 4687-1 27.19 56.29 60.00 337.00
167 2008/09/17 Suza 4690-1 26.78 56.07 17.00 1334.00
168 Qeshim 4688-1 26.96 56.28 41.00 757.00
169 Suza 4732-2 26.78 56.07 35.00 1334.00
170 Tabl 4735.00 26.76 55.73 14.00 931.00
171 20081207 e dareAbasl  4734.00 27.19 56.29 70.00 337.00
172 Bandar-e-Khamir 4736.00 26.95 55.58 25.00 679.00
173 Bandar-e-Abasl 4742.00 27.19 56.29 68.00 337.00
174 Suza 4739-1 26.78 56.07 33.00 1334.00
175 2008/12/08 Tabl 4741-1 26.76 55.73 15.00 931.00
176 Qeshm 4737-1 26.96 56.28 54.00 757.00
177 Suza 4739-2 26.78 56.07 30.00 1334.00
178 2008/12/09 Qeshm 4737-2 26.96 56.28 55.00 757.00
179 Tabl 4741-2 26.76 55.73 16.00 931.00
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