
Vol. 15, No. 3 & 4, 2013JSEE

Available online at: www.jseeonline.com

In this study, the position of the truncation boundary, which is an important issue
when modeling the reservoir in the finite element formulation and determining
the hydrodynamic pressure on the dam, is investigated. Water in the reservoir is
assumed to be compressible, and the Sommerfeld boundary is used to model
the far field. The Euler-Lagrange method is used to analyze the reservoir-dam
interaction. The serendipity element is used to model the reservoir and dam.
The foundation is considered to be rigid. Most researchers assume that the trunca-
tion boundary is located three times the total height of the dam away from the
dam body, and they use the Sommerfeld boundary at this location. For this purpose,
the reservoir was disconnected at different intervals. The Pine Flat Dam is
commonly analyzed with a Taft earthquake. The results of the analyses for different
positions of the truncation boundary in reservoir models show that the position
of the Sommerfeld boundary at five times the height of the dam away from the dam
body is a proper place for the truncation boundary. Moreover, comparing the results
of the present study based on the compressibility of water and those of previous
research based on the incompressibility assumption indicates that the maximum
hydrodynamic pressure is approximately 153.8% for a Taft earthquake. Therefore,
the assumption of water compressibility plays an important role when evaluating
the Pine Flat Dam.
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1. Introduction

In the study of fluid-structure interaction, one of
the main problems is identifying the hydrodynamic
pressure applied to the dam body during an earth-
quake. This issue plays a vital role in the safety
evaluation of power generator nuclear reactors and
many other industrial infrastructures; thus, fluid-
structure interaction is a vast and unique subject that
embraces all aspects of solid and fluid mechanics.

Analyzing a dam-reservoir system is much more
complicated than analyzing the structure alone be-
cause of the difference between the characteristics
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of the fluid and  the concrete on one side of the dam
and the interaction between the reservoir and the dam
on the other side.

In the 1970s, due to some damages occurred in
a number of big dams, the dam interaction analysis
was attracted in many researchers to work on the
topic. One of the early methods is based upon fluid
incompressibility assumption. Based on this assump-
tion, Westergard solved the equation governing the
hydrodynamic pressure in the dam reservoir domain
(Helmholtz's equation) [1]. In this method for the
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analysis of concrete dams, fluid is treated as an added
mass to the body of the dam.

Then, the studies of Chopra [2-3] showed that
the fluid incompressibility assumption does not
predict correctly the applied hydrodynamic pressure
on the dam body. Therefore, the earthquake
engineering group in concrete dams has considered
fluid compressibility in most concrete dams as an
important factor in determining the earthquake
response [4].

Previous studies on two-dimensional gravity
dams root back to late 1970s, in which interaction
effects were considered through the exact and
non-numerical solutions of the governing equations
[5-6].

Humar and Roufaiel [7] proposed a finite element
model for the analysis and computation of hydro-
dynamic pressure in an infinite reservoir of a
gravity dam. They proposed an applicable boundary
condition for a special seismic excitation frequency
range. Sharan [8] proposed an effective method
for the analysis of applied pressure on dams. This
method is based on the finite element method in
the frequency domain. Dissipation of energy was
simulated by modeling of reservoir length as an
infinite length and reservoir bottom sediments.

Ghaemian and Ghobarah [9] used staggered
method in the problem of fluid-structure interaction.
Hence, the staggered displacement method and the
staggered pressure method were proposed to solve
the fluid-structure interaction. Both of the methods
are suitable for nonlinear analysis. Results expressed
that even for large time steps; the displacement
method provides more stable solutions. Previous
studies assumed small displacement behavior for the
fluid and also neglected the terms of transmission
acceleration in the Navier-Stokes equation. However,
Chen [10] studied the effects of surface flows and
the nonlinearity of convective acceleration on the
analysis of 2D gravity dams and reservoirs. In this
study, not only nonlinear hydrodynamic pressures and
the rise of the water surface but also the structural
dynamic responses of the dam have been calculated.
Comparison between the results of analyses with
and without water surface effects showed that the
surface wave effects of the fluid can be neglected in
the dynamic structural analysis of a concrete gravity
dam. Zienkiewicz and Taylor [11] explained the
governing fluid-structure equations using the

finite element method. For modeling the upstream
boundary of the reservoir, they used radiative
boundaries. Seghir et al. [12] used the coupled finite
element and symmetric boundary element to model
the interaction problem. In this study, fluid was
assumed as incompressible and the location of
the truncation boundary is considered at distances
LF = 3 x HB and LF = 0.25 x HB. That  LF is the length
of the reservoir and HB is the height of dam.
Predicted hydrodynamic pressure by finite element
method for the length of the reservoir equal to
0.25 x HB shows large values in comparison with
boundary element method. However, the results of
finite element method for the length of the reservoir
equal to 3 HB are in accordance with the results of
the boundary element method.

Akkose et al. [13-14] analyzed the fluid-structure
interaction for an arch dam. Three-dimensional
eight-node elements with the Lagrange-Lagrange
approach were used for the nonlinear analysis of
the arch dam. The nonlinear behavior of the
concrete dam was modeled by the Drucker-Prager
criterion. Du et al. [15] studied the nonlinear seismic
response of a foundation-arch dam system. The
responses were determined based on the combina-
tion of the implicit finite element method, the
transmitting boundaries and the "Relaxation" dynamic
method. Comparison of responses between the
proposed method and the common method of the
analysis shows that the maximum dynamic stress
from proposed method is lower than that of the
common method. Aznarez et al. [16] analyzed
the fluid-structure interaction with the effects of
reservoir bottom absorbent materials. The boundary
element method was applied for the analyses in the
frequency domain. The effects of absorbent materi-
als, degree of consolidation, compressibility and
permeability were considered on the dynamic
responses of the system. The nonlinear finite element
method and boundary element method were respec-
tively used to model the structure and fluid in
the analysis of fluid-structure interaction problems
in the time domain [17]. Maity and Bhattacharyya
[18] studied different parameters on fluid-structure
interaction problem. The parameters included the
thickness of dam, modulus of elasticity and reservoir
water level.

Mitra and Sinhamahapatra [19] used the finite
element method  to simulate the sloshing effect on a
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water storage tank. Results of the analyses illustrated
the hydro-dynamic pressure on flexible walls is
more than the rigid walls. Bonnet et al. [20] used a
combination of the finite element and boundary
element methods to simulate the dam-reservoir
interaction in the frequency domain. The analyses
were implemented based on elastic behavior of
material and a rigid reservoir bottom. The results of
the analyses show good agreement between theo-
retical and numerical predictions.

Gogoi and Maity [21] analyzed the fluid-structure
interaction in the frequency domain. The analyses
were included the sloshing effects. The material
behavior was assumed as linear-elastic and fluid as
compressible. The Sommerfeld boundaries were
used at distance 3HB of the dam, HB is the height of
the dam. Akkose et al. [22] focused on non-linear
seismic response of a concrete gravity dam subjected
to near-fault and far-fault ground motions including
dam-water-sediment-foundation rock interaction.
The results showed that the crest displacement
values for near-fault ground motion are greater than
those for far-fault ground motion, although the peak
ground acceleration of near-fault and far-fault records
are the same. According to presented results, it is
apparent that the linear and non-linear seismic
response of the gravity dam under near-fault ground
motion is affected greater than those subjected to
far-fault ground motion.

Wang et al. [23] proposed a procedure for the
time-domain analysis of gravity dam-reservoir inter-
action. In this procedure, the dam and a part of the
reservoir with irregular geometry were modeled
with finite elements. A high-order doubly asymptotic
open boundary condition was developed to model
the remaining part of the reservoir simplified as a
semi-infinite layer of constant depth. In this paper,
the same isoparametric finite elements were used
in modeling the near field and the far field of a
semi-infinite reservoir, and the open boundary
condition is split into the Sommerfeld radiation
boundary and an external nodal load. Numerical
examples demonstrate the excellent performance of
this present technique not only for early-time but also
for long-time computations. Bayraktar et al. [24]
investigated the effects of finite element (FE) model
updating on nonlinear seismic response of arch
dam-reservoir-foundation systems. In the analytical
modeling, arch dam-reservoir-foundation interaction

was represented by Lagrangian approach. The
results of this paper shows that, after model updating
by adjusting material properties, the differences
between initial analytical and experimental natural
frequencies of Berke Dam are reduced. The dis-
placements and the maximum principal stresses
from an updated FE model are smaller than those of
the initial FE model. The frequency content of the
displacements, strains, and stresses obtained from
an updated FE model are different from the initial
model. Birk et al. [25] solved the dam-reservoir
interaction problem, directly in the time-domain
by modeling a part of the reservoir as a semi-infinite
fluid-channel. Radiation damping is taken into
account rigorously using an analytical solution with
respect to the direction of wave propagation. The
results showed that the accuracy of the model in the
frequency-domain is governed by the refinement of
the semi-discretization rather than the degree of
rational approximation. In order to increase the
applicability of the method, a description of the
semi-infinite fluid region using polar coordinates,
or more general scaled boundary coordinates, is
desirable. Bouaanani and Lu [26] assessed the use
of a potential-based fluid finite element formulation
to investigate earthquake excited dam-reservoir
systems. The results mainly illustrate that the
potential-based formulation coupled with the bound-
ary conditions discussed in the paper and enhanced
post-processing capabilities can be advantageously
and efficiently used to assess dam-reservoir seismic
response.

Most engineers consider the fluid domain to be
an infinite region; however, the reservoir has to be
cut at a proper distance from the dam body by
employing a truncation boundary condition like the
Sommerfeld boundary. This type of boundary attracts
the energy of waves to simulate propagation of
waves to the far field. It should be noted that the
appropriate location of the truncation boundary
when using the Sommerfeld boundary has not been
studied. Thus, in the present paper, the proper
location for using truncation boundary condition is
investigated assuming that the fluid is compressible.
Then, the predicted results are compared with the
predicted results by Seghir et al. [12], which were
based on the incompressibility assumption.

For this purpose, a program was written in
the FORTRAN language, and the eight-node
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serendipity element with plane strain behavior is
used to model the dam and reservoir. The
Euler-Lagrange method is applied in finite element
procedure to determine the hydrodynamic pressure
in the fluid.

2. Governing Equation of Wave Propagation
Through Fluid

Akkose et al. [13] provided a vast study on dif-
ferent references related to the problem of fluid-
structure interaction in which the finite element
method is used. According to this study, three  meth-
ods ar used in solving the fluid-structure interaction
problem through the use of the finite element
method. These methods are: Westergard, Euler-
Lagrange and Lagrange-Lagrange.

In the Westergard method; the effect of the
reservoir is applied to the structure as an added
mass. In this method, the effect of pseudo fluid
stiffness matrix and the interaction between dam
and reservoir is neglected during earthquake acting.

In the Lagrange-Lagrange method, the response
of both structure and fluid is the displacement, and
the governing equations of the dam and reservoir
system are symmetric.

In the Euler-Lagrange method; displacement is
assumed as the variable response of the structure,
and the pressure or velocity potential function is
assumed to be the variable response of the fluid. In
this case, the coupled system equations are non-
symmetric.

In this study, the Euler-Lagrange method is used
to analyze the dam-reservoir interaction problem.

In both Eulerian and Lagrangeian methods, the
governing equation of fluid-structure system is
determined using wave propagation through the
fluid by assuming linear compressibility and inviscosity.
The wave propagation equation through fluid is as
follows [11]:
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where p is the pressure function and c is the acoustic
wave speed. If the fluid would be assumed as
incompressible, Eq. (1) would take the following
form [11]:
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This equation has been solved and studied by

many researchers through different analytical and
numerical methods. However, in this study, Eq. (1)
is used to solve the fluid-structure interaction.
Therefore, the boundary conditions of the governing
equation as shown in Figure (1) are stated as below:

2.1. Reservoir Upstream Boundary (ΓR )

Through the vibration of dam, volumetric waves
due to hydrodynamic pressure are created in the
reservoir. These waves would propagate toward the
upstream. In cases that the length of the reservoir
is infinity, these waves would finally vanish. In
numerical modeling, it is common that the length of
the reservoir would be a finite length. Therefore, in
this case, a Sommerfeld-type radiation boundary
condition is applied as:
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2.2. Reservoir Bottom Boundary (ΓB)

According to the rigidity of the reservoir bottom
and assuming the earth moves horizontally, the
pressure gradient is neglected for the ΓB boundary.
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                                                             (4)

2.3. Reservoir Free Surface Boundary (ΓF)

By neglecting the effects of surface waves, the
governing boundary condition is as follows:

0=p                                                                (5)

2.4. Fluid-Structure Interface (ΓI):

The body of the dam is deformed during an

Figure 1. Dam-reservoir coupled model.
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earthquake due to the inertia forces. The deforma-
tion is caused by hydrodynamic pressure in the
reservoir which depends on compressibility assump-
tions. Then, the hydrodynamic pressure interacts
with the body face of the dam (ΓI ). Consequently,
the applied pressure on the dam caused by the inertia
forces is as follows:
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p

&&×ρ−=
∂
∂

                                                     (6)

where ρ is the density of fluid, and nu&&  is the struct-
ure's acceleration vector in the direction normal to
the common boundary of the fluid and structure.

Using the Galerkin method, Eq. (1) can be
rewritten as follows:
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where NP , is the hydrodynamic nodal interpolation
function in the finite element method. As a result,
by using discretization in finite element method, and
placement the boundary conditions in Eq. (7), the
equation governing the fluid can be compacted as
follows:
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where [S], ]~[C  and [H] are pseudo mass matrix,
pseudo damping matrix and pseudo fluid stiffness
matrix, respectively.

3. Structure Governing Equations

Based on the theory of the finite element method
[11], the governing equation of the dynamic response
of the structure to support excitation in the time
domain can be described as follows:

0)( =××+−++ tuIMQpKuuCuM g  &&&&&                  (9)

where [M], [C] and [K] are mass, damping and
stiffness matrices of the structure, respectively. ,, u u &

and u&&  are displacement, velocity and acceleration
vectors, respectively. In Eq. (9), I is a unit matrix that

transforms the support acceleration vector )}({ tug&&

to the structure degrees of freedom. The role of
matrix Q is to transform the acceleration of the
structure to pressure flux, and to transform the
hydrodynamic pressure into applied loads on the
structure. In fact, matrix Q causes the interaction
between fluid and structure. In the same relation,
vector n  is normal to the common surface of the
structure and fluid. Hence, the coupled equation of
the fluid-structure system based on relations (8) and
(9) in the Euler-Lagrange formulation are presented
as follows:
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A computer program is written in the FORTRAN
language based on Eq. (10). The Pine Flat Dam is
analyzed using the equations and the Sommerfeld
boundary condition. Then, the results of the present
work based on the compressible fluid assumption
and using the Sommerfeld boundary conditions are
compared with results of the analysis by Seghir et al.
[11], which were based on the coupled finite element
and symmetric boundary element method and on the
incompressible fluid assumption. Finally, the response
of Pine Flat Dam is evaluated with different bound-
ary distances to determine an appropriate truncation
boundary location.

4. Analysis of the Pine Flat Dam During the Taft
Earthquake

Dynamic analysis of Pine Flat Dam is used to study
the effect of fluid compressibility. The geometric
properties and dimensions of the Pine Flat Dam are
presented in Figure (1) and Table (1). The recorded
horizontal component of the ground acceleration
during the Taft earthquake (S69E) shown in Figure
(2) is used in the analysis. Table (2) summarizes the

Dimensions (m) Material Properties 

HB HC LB LC LF HF E  
(N/m2) ν ρ 

(Kg/m3) 

122.0 18.5 96.0 9.75 366.0 116.0 34.47×109 0.2 2440 

Table 1. Geometry and material properties of the Pine Flat Dam.
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Figure 2. Horizontal ground acceleration record of the Taft
earthquake.

Table 2. Geometry and material properties of the Pine Flat Dam.  

5 4 3 2 1 Mode 
Number 

0.0466 0.0705 0.0921 0.1241 0.2558 Dam Alone  
FE 

stiffness proportional damping equivalent to five
percentage damping (5%) is used for all the modes.
A time step of 0.005 sec is chosen for the analysis.
The density and velocity of the pressure wave in fluid
are set to 1000 and 1438.7, respectively. The dam
and reservoir are discretized by the isoparametric
eight-noded element with plane strain behavior.

The time history of horizontal displacement at
the dam crest and the hydro dynamic pressure for
present work are compared with predicted results by
ANSYS software in Figure (4), respectively. Figure
(5) shows comparison of predicted hydrodynamic
pressure distribution from present work and ANSYS
software when the hydrodynamic pressure at point
A in Figure (3) is the maximum value. The compari-
sons in Figures (4) and (5) show good agreement
between predicted results by present work and
ANSYS software. However, Figures (4) and (5)
show little differences between the results of
present work and ANSYS software. The differences
are due to the type of applied elements for both
modeling. The four-noded element with the bi-linear

Figure 3. Mesh of the dam and reservoir.

Figure 4. Time history analysis under the Taft earthquake 0.179g, a) Horizontal displacement of the dam crest, b) Hydrodynamic
pressure of the dam heel.

results of the periods for the first five free vibration
modes. Figure (3) shows mesh of the system. The
results of the present work and the ANSYS soft-
ware (for the un-damped system) are compared in
Figures (4) and (5). The eight-noded element with
plane strain behavior is used for both models. A

Figure 5. Hydrodynamic pressure distribution on upstream
face of the dam under the Taft earthquake.
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shape function was used for modeling of the dam
and fluid in ANSYS software, but the isoparametric
eight-noded element, Serendipity element, with higher
order shape function was used for modeling of the
dam and fluid in present work. The predicted results
from the proposed method are compared with the
results of Seghir et al. [12] in Figure (6). It should be
noted that the results shown [12] were obtained
based on the fluid incompressibility assumption. This
assumption causes the obtained hydrodynamic
pressure to be lower than the real value. However,
the results predicted in the present work are based
on the compressible fluid assumption and use the
Sommerfeld boundary condition.

Figure 6. Hydrodynamic Pressure envelope acting on the up-
stream face of the dam.

In Figure (6), Y is the high level from the base.
Figure (6) shows that the fluid compressibility as-
sumption, present work, causes the hydrodynamic
pressure to be greater than the predicted hydrody-
namic pressure using the incompressible assumption
by Seghir et al. [12]. Therefore, the incompressible
fluid assumption causes a significant error in the
evaluation of the hydrodynamic pressure applied to
the dam body. Figure (6) shows that the maximum
hydrodynamic pressures predicted from the com-
pressibility and incompressibility assumptions are
380.7 kPa and 150 kPa, respectively. Hence, the
results predicted using the compressible fluid as-
sumption and the Sommerfeld boundary condition
are more accurate than using the incompressible fluid
assumption or the coupled finite element and
symmetric boundary element method. Thus, the
response of the Pine Flat Dam is studied for differ-
ent near-field earthquakes to evaluate the frequency
effects on the dam. The Taft, Elcentro, Chi-Chi and

Kobe earthquakes are selected as near-field earth-
quakes. The selected earthquakes are scaled to a
maximum acceleration of 0.35 g, which is chosen
such that the earthquake has a mean return period of
475 years and that a stronger earthquake will occur
with a probability of 10%.

5. Frequency Analysis of Different Earthquakes

The Taft, Chi-Chi and Kobe earthquakes are ap-
plied to analyze the Pine Flat dam. These earthquakes
are known as near-fault field. The recorded accel-
erations for different earthquakes are scaled to the
peak ground acceleration 0.35g. Figure (7) shows
scaled different earthquakes.

The contents of frequency of different earth-
quakes are evaluated to predict critical earthquake
on Pine Flat dam. Therefore, the response of the dam-

Figure 7. Scaled recorded acceleration to 0.35g a), Taft b),
Chi-Chi and c) Kobe earthquake.
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reservoir system depends on contents of frequency
of different earthquakes. Hence, the critical earth-
quake that causes the maximum hydrodynamic
pressure on the dam body is determined by using
the  Fourier analysis. Then, after the analysis of the
dam-reservoir system under different earthquakes,
the validity of these analyses can be determined. The
Fourier spectrum of Taft, Chi-Chi and Kobe earth-
quakes are shown in Figure (8) by using Fast Fourier
Transform (FFT) analysis.

Figure 8. Frequency analysis of scaled different earthquakes
to 0.35g a) Taft, b) Kobe and c) Chi-Chi.

Extracted results from Figure (6) are shown in
Table (3). Tmax in Table (3) shows the period in
which determined Fourier amplitude of frequency
analysis has the maximum value. Table (3) shows
maximum Fourier amplitude is 2.527 for Taft
earthquake, 1.981 for Kobe earthquake and 1.02 for
Chi-Chi earthquake. Moreover, value of the Fourier
amplitude at period first mode of the dam is 0.665 for
Taft earthquake, 0.402 for Kobe earthquake and
0.0725 for Chi-Chi earthquake. Hence, the response
of the dam is predicted to be a maximum value for
Taft earthquake and then Kobe and Chi-Chi earth-
quakes, respectively.

Earthquake Taft Kobe Chi-Chi 

P.G.A 0.35g 0.35g 0.35g 

Tmax (sec) 0.3360 0.4930 0.4270 

Fourier amplitude at Tmax 2.5270 1.9810 1.0200 

Period first mode only for the 
structure of the dam (TS) 

0.2558 0.2558 0.2558 

Fourier Amplitude at TS 0.6650 0.4020 0.0725 

Table 3. Summarized results of the frequency analysis for
different earthquakes scaled to 0.35g.

According to Fourier analysis, the Taft earthquake
is the ruling earthquake. Thus the dynamic response
of the dam-reservoir systems under the Taft earth-
quake is investigated.

Figure (9) shows the hydrodynamic pressure on
the heel and the horizontal displacement of dam crest
under the Taft earthquake. The analyses was
performed both for the damped and undamped
conditions.

6. Dynamic Analysis of the Pine Flat Dam with
Different Reservoir Lengths

Previous investigations have shown that the
position of the truncation boundary has a significant
effect on the hydrodynamic pressure on the dam
body; however, in the past, many studies have
chosen the location of truncation boundary to be
3 HB from the dam body [12].

Moreover, it should be noted that when choosing
the position of the truncation boundary in the upstream
region model, the hydrodynamic pressure may not be
calculated correctly. Thus, the distances of the
location of the truncation boundary are selected as
3 HB, 5 HB, 7 HB, 10 HB, 15 HB, 23 HB and 50 HB. The
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Figure 9. Analysis time history of hydrodynamic pressure at bottom of upstream face of the dam and analysis time history of
horizontal displacement of dam crest under the Taft earthquake.

50 HB 23 HB 15 HB 10 HB 7 HB 5 HB 3 HB Length of Reservoir 

Damped 

540 565.05 509.94 643.97 471.87 590.35 744.2 P (kPa) 

Undamped 

623.78 668 621.7 773 696.45 630.5 1115.2 P (kPa) 

 

Table 4. Time history response of the hydrodynamic pressure acting at the bottom of the upstream face of the dam (point A).

analyses were performed both for the damped and
undamped conditions. The first and fifth modes of
the damped condition were used to determine the stiff-
ness matrix coefficients. The results are presented
for the heel of the dam (point A).

As observed from Table (4), the hydrodynamic
pressure at the bottom of the upstream face of the
dam (i.e., the dam heel) in both damped and undamped
conditions has little variation when the boundary is
beyond 5 HB.

However, the values of the maximum hydro-
dynamic pressure on the dam body at 5  HB are
considerably different than those for 3 HB both in

the damped and undamped conditions. The ratio of
the maximum hydrodynamic pressure, when the
reservoir length is 3 HB and the distance is 5 HB for
the damped and undamped conditions are 1.260
and 1.768, respectively.

Figure (10) shows the distribution of the hydrody-
namic pressure on the dam body under the damped
and undamped conditions. The horizontal axis in
this figure is normalized to the maximum hydrostatic
pressure. The hydrodynamic pressure distribution
for 3 HB is greater than that for the other distances.
However, the hydrodynamic pressure distributions
for reservoir lengths between 5 HB and 50 HB are
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Figure 10. Hydrodynamic Pressure envelope acting on the upstream face of the dam with different reservoir lengths for the a)
damped and b) undamped conditions.

close together. Thus, a reservoir length of 5 HB is
economic for numerical analyses. However, the
results based on 5 HB are close to those based on
50 HB, and the value of the hydrodynamic pressure
for 5 HB is a little more than that for 50 HB. Conse-
quently, assuming a reservoir length of 5 HB is
economic and can be used to analyze reliably the
dam-reservoir interaction under earthquake excita-
tion. The distribution of hydrodynamic pressure in
the reservoir is shown in Figure (11) when the pres-
sure of the heel point of dam is at its maximum
value. Figure (11a) shows a region with zero pres-
sure for undamped system while this phenomenon

Figure 11. Variation of the hydrodynamic pressure in the reservoir for the length equal to 5HB when the pressure of the heel of
the dam is at its maximum value.

is not occurred for damped system, Figure (11b).
The region with zero pressure is occurred for both
damped and undamped system when the length of
reservoir is 15 HB, Figure (12).

Comparison between results for the length of the
reservoir equal to 5 HB and 15 HB shows that the
negative pressure or cavitations' phenomenon is
occurred at the end of the reservoir with the length
of 15 HB. Hence, the region with zero pressure and
the negative pressure created chaos at the bottom of
the reservoir. Consequently, a series of hillocks are
created at bottom of the reservoir. These hillocks
may cause larger hydrodynamic pressure on the
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dam than the pressures shown in Figure (12) when
next similar earthquakes are occurred in presence of
these hillocks.

6. Conclusion

In this study, the fluid compressibility effect was
considered using dynamic analysis of the Pine Flat
Dam in the Taft earthquake. For this purpose, a
program was written in FORTRAN language in
which an eight-node serendipity element with plane
strain behavior was used to model the dam-reservoir
system. In this study, the foundation was assumed to
be rigid, and the fluid was assumed to be inviscous
and compressible. The analysis determines the
maximum applied hydrodynamic pressure on the dam
body by assuming that the fluid compressibility is
2.5 times greater than that with the fluid incompress-
ibility assumption. Then, the proper location for the
truncation boundary condition was investigated
to model the upstream region of the reservoir. For
this purpose, the reservoir was cut at distances 3 HB,
5 HB, 7 HB, 10 HB, 15 HB, 23 HB and 50 HB, from the
dam body. According to the performed analyses
and Figure (10), for both damped and undamped
conditions, the reservoir should be divided at 5 HB
from the dam body in both damped and undamped
conditions; beyond this distance, the distribution of
hydrodynamic pressures is almost consistent, and as
the reservoir length increases, the hydrodynamic
pressure on the dam body does not change signifi-
cantly. Due to the importance of the position of the

Figure 12. Variation of the hydrodynamic pressure in the reservoir for the length equal to 15HB when the pressure of the dam is
at its maximum value.

truncation boundary in determining the hydrodynamic
pressure on body dam, the horizontal length of the
reservoir should be five times the total height of the
dam to model the reservoir using the finite element
method based on the results.
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